
SNS APPLICATION PROGRAMMING INFRASTRUCTURE AND 

PHYSICS APPLICATIONS* 

P. Chu†1, S. Cousineau1, V. Danilov1, J. Galambos1, T. Pelaia1, A. Shishlo1, C.K. Allen2 
1SNS, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 2Los Alamos National Laboratory, Los 

Alamos, NM, USA 

ABSTRACT 
A Java based hierarchal framework for application programming is developed for the Spallation 

Neutron Source (SNS). The framework, called XAL, is designed to provide an accelerator physics 

programming interface to the accelerator.  Much of the underlying interface to the EPICS control 

system is hidden from the user. Also, since the accelerator structure is initiated from a database, 

introduction of new beam-line devices or signal modifications are immediately available to any 

generic-beam-line XAL application.  An on-line model is included in this framework for quick beam 

tracking.  Utility tools such as interfaces to other external modeling software and optimization solver 

are also available.  A standard graphical user interface (GUI) is provided within the framework to 

minimize repeated coding work.  Many beam-tuning applications, general purpose diagnostic tools 

and a physics data logger have been developed and tested during the SNS warm linac commissioning 

runs. 

INTRODUCTION 
At the SNS, the majority of the accelerator applications are written with a Java based programming 

framework, XAL [1, 2].  The key features of XAL include an object-oriented hierarchal representation 

of the accelerator, an interface to the control system, an envelope based online model, a standard GUI 

framework for applications, GUI applications, non-GUI service daemons and utility tools such as data 

plot, optimization, database wrapper and online logging service.  There are over fifty XAL based 

applications being used for SNS beam commissioning. 

Fig. 1 shows the relationship between the XAL application level and other control system 

components.  A small subset of the global database is extracted to an XML formatted file which is for 

initializing beam-line related applications.  An initialization “probe” file contains beam parameters is 

necessary for online model calculation.  XAL applications communicate with the EPICS control 

system via Java Channel Access interface.  PV (Process Variable) logging to the global database can 

be done periodically by an XAL service daemon or by application’s request.  More details of the XAL 

components and application examples will be discussed in the following sections. 

XAL FRAMEWORK 
The core part of the XAL infrastructure is a set of classes describing an accelerator hierarchy as 

shown in Fig. 2.  An accelerator is at the top of the hierarchy; the accelerator contains sequence(s); 

each sequence is composed by hardware devices called nodes.  In most cases, for each unique type of 

devices, there is a corresponding class for its property (attribute) and another class for its usage 

(implementation).   

Database Configuration 

The SNS global database [3] shown in Fig. 1 has schema design suitable for all the static 

information needed by various XAL applications.  Although the global database is not part of the XAL 

framework, it is configured based on the XAL requirements.  A database query application can 

generate an accelerator file whenever there is some beam-line device change in the database.  At the 

commissioning stage, the database may not be suitable as the only static data source for the 

  
*SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.  SNS is a collaboration 

of six US National Laboratories: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Thomas Jefferson 

National Accelerator Facility (TJNAF), Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), and 

Oak Ridge National Laboratory (ORNL). 
†
E-mail address: chuc@ornl.gov.

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.076-5  (2005)



application.  Therefore, we use an accelerator file for application initialization.  This accelerator file 

(shown in Fig. 1) also has similar XML structure as shown in Fig. 2.  Other essential parts of the 

framework will be discussed in detail here. 

Customized online data including physics related machine snapshot are also stored in the database 

via PV logger.  Many applications can also take PV logger data for offline analysis. 

 

Figure 1: Application software infrastructure. 

 

Figure 2: Schematic drawing of the core XAL accelerator class hierarchy. 

Online Model 

An important XAL feature is the online accelerator model [4], which allows for on-the-fly 

calculation of beam parameters, based on machine settings. The online model is loosely coupled with 

the other part of the XAL.  The main components are a lattice, and a probe and its associated algorithm 

(describing the beam, and how it is to be modeled).  The lattice is generated via a set of rules, from the 

accelerator node device information.  In the transformation to the lattice view, devices may be split 

into more than one piece, and drift spaces are added (note that no drift information is stored in the 

XAL initialization database, only actual device information). The entries in the lattice view are called 

elements.  Also, a visitor pattern scheme is used to facilitate synchronization of the lattice view 

parameters, with updates from different sources.   The online model supports data sources from design 

lattice, live machine lattice, PV logger machine snapshot and user defined ‘what-if’ magnet and RF 

10th ICALEPCS 2005; P. Chu, S. Cousineau, V. Danilov, J. Galambos, T. Pelaia, A. Shishlo, C.K. Allen et... 2 of 6



cavity settings.  It is possible to run the online model outside of XAL, as long as an online model 

lattice and a probe are supplied.  Fig 3 shows an application based on the online model.   

The online model has both envelope and single particle tracking capability, and has capability for 

single pass (linac + transfer line) and closed orbit (i.e. ring). Since SNS is a high intensity proton 

device, space charge effects are incorporated in the model. 

 

 

Figure 3: Online model application. 

Connection to the Control System 

XAL uses EPICS as the underlying control system to communicate with accelerator hardware (see 

Fig. 1). EPICS communication uses a single PV as the fundamental unit for communication with 

higher level programs via a protocol called Channel Access (CA). XAL has a Channel class that 

encapsulates the communication with a PV.  As shown in the bottom row of Fig. 2, XAL provides a 

simple interface to the hardware and hides all the Channel complication from application writers. 

GUI Framework for Applications 

Initially in the XAL development, each application developer created their own GUI interface from 

Java swing components. This approach had drawbacks of duplicated effort, a different look and feel 

for each application, and maintenance difficulties. As such, a common GUI application framework 

base class was created to serve as an application template. This gives application developers a jump-

start for laying out the application and also provides a common look and feel to the users.  Also, 

features can be added to the base framework, and appear in all the applications.  This approach has the 

additional advantage of easing the first time application development for “newbie” application 

developers.  

The application framework panel and main menus is shown in Fig. 4.  This framework incorporates 

some service features which help with administrative tasks. For example all applications broadcast 

information, and a special viewer application allows a user to see which applications are running, how 

long they have been running, memory usage, garbage collection, and can force an application to quit. 

 

Figure 4: The XAL GUI application framework view, showing common features inheritable by all 

applications. 

10th ICALEPCS 2005; P. Chu, S. Cousineau, V. Danilov, J. Galambos, T. Pelaia, A. Shishlo, C.K. Allen et... 3 of 6



Tools 

Many general purpose tools have been written, which are shared between applications, a small 

portion of all the available tools are described here.   

The SNS is a 60 Hz pulsed device, and each signal has a timestamp attached, corresponding to the 

start of the pulse. A correlation tool allows collection of groups of signals with comparable 

timestamps. It has many features including triggered acquisition to allow sets of data to be grabbed 

only when some specified external criteria is met.  

A data table structure provides simple database like functionality. This structure provides more 

capability than the built in Java collections (e.g. database like querying), yet is much simpler to 

implement than construction of a real set of database tables.  

A communication layer is available for client-service needs. It uses XML-RPC for inter-process data 

exchange and uses Rendezvous for discovering subscribers and publishers. Knowledge of the details 

of Rendezvous and XML-RPC are hidden from the user. 

Additional tools include plotting, database connection, XML data parsing, external modelling tool 

support and optimization packages.  

Scripting Interface 

A common first implementation of many of the tools and XAL packages is via a scripting interface. 

We use Jython [5] as the primary scripting language with XAL. Jython is a Java version of the more 

common Python scripting language. Importantly, any Java classes can be used directly with jython, 

without the need to write the usual software interface glue code needed with more traditional 

languages like C++. Jython is used to write quick tests and example usage for new XAL packages, 

perform “post-facto” data analysis, do tedious one-off machine communication, and even to write 

simple applications.  The scripts are typically much faster to develop than GUI applications, and if 

fruitful, can subsequently be converted into a traditional GUI application. 

We have also tested XAL interfaced directly with Matlab. As Matlab now supports importation of 

Java classes into it’s scripting language this is possible. However, most XAL developers prefer the 

Jython language. 

XAL APPLICATIONS AND SERVICES 

General purpose applications 

 

Figure 5: Timestamp test application shows with PV timestamps as horizontal coordinate.   

There are many general purpose XAL applications which can be used for monitoring or diagnostic 

purposes.  Besides the online model application shown above, some other examples are: 

‚ Xio – monitoring and plotting any beam-line device non-array PVs. 

10th ICALEPCS 2005; P. Chu, S. Cousineau, V. Danilov, J. Galambos, T. Pelaia, A. Shishlo, C.K. Allen et... 4 of 6



‚ PV correlator – displaying two or three PVs from the same beam pulse in X-Y plot. 

‚ Beam loss viewer – displaying beam loss monitor readings along the beam line. 

‚ Scan application – scanning one or two PVs and monitoring some other PV(s). 

‚ Scope – a digital scope-like application. 

‚ PV timing test – displaying PV timestamps and live trace plot as shown in Fig. 5.  

‚ Diagnostics device timing – display and set timing for diagnostic devices as shown in Fig. 6. 

‚ Virtual accelerator – providing a simulation environment for application test.  

 

Figure 6: Diagnostics timing utility application. 

Accelerator physics applications 

Another group of applications is mainly for accelerator tuning or physics experiments.  Highlights of 

physics applications are:  

 

Figure 7: Superconducting RF cavity tuning application (SLACS). 

‚ Orbit difference – checking steer and BPM polarity with the online model. 

‚ Orbit correction – automated trajectory flattening tool. 

‚ Energy manager – calculating a reasonable lattice when energy changed. 

‚ PASTA – setting phase and amplitude of RF cavities. 

10th ICALEPCS 2005; P. Chu, S. Cousineau, V. Danilov, J. Galambos, T. Pelaia, A. Shishlo, C.K. Allen et... 5 of 6



‚ SLACS (Superconducting Linac Automatic Cavity Setter) – setting phase and amplitude for 

superconducting RF cavities as shown in Fig. 7.  

‚ Emittance analysis – analyzing emittance scan data. 

‚ Ring injection – providing ring injection tuning. 

‚ Ring optics – providing ring optics optimization. 

‚ Ring measurement – perform various ring related measurements.  

Services 

One of the XAL tools is a mechanism to support client/server communication. As multiple 

applications may access the same online resources, a dedicated service can serve as an agent for these 

applications and minimize the system resource requirement.  A few services have been written that 

utilize this feature. An example is the administrative application viewer tool that can determine the 

existence and status of other XAL applications. Another example is a machine protection system 

service that continually monitors machine trips, performs post mortem analysis and keeps machine trip 

statistics, which are stored in a database table.  A logger service is also available for taking snapshots 

of prescribed sets of signals, and storing them in a database.  The main use for this service is to log the 

machine settings needed to set up the online model, but a web application is also available for anyone 

to configure a set of signals to log.  We expect the use of services to expand as XAL matures. 

CONCLUSION 
The XAL structure is matured with many facilities for application programming. More than 50 

applications are produced and used during the SNS commissioning. Many other accelerator 

laboratories are interested in adopting the XAL.  The next development stages will focus on ring 

related applications.  XAL is written in Java and uses a database for both configuration and 

measurement data storage. In retrospect, we are extremely happy with the decision to adopt these 

technologies. The SNS is a new accelerator project, with a programming layer that uses modern 

software technology.  

ACKNOWLEDGEMENTS 
Many people have contributed to the development of XAL, including A. Aleksandrov,  S. Bunch, I. 

Campisi, S. Chevtsov, R. Dalesio, K. Danilova, A. Feshenko, D. Gurd,  S. Henderson, J. Holmes,  D. 

Jeon, R. Kennedy, W.D. Klotz, Y. Kiselev,  I. Kriznar, A. Leahman, C. McChesney, N. Malitsky, D. 

Ottavio,  N. Pattengale,  M. Plesko, M. Plum, A. Pucelj, C. Sibley, E. Tanke,  J. Wei, E. Williams, Y. 

Zhang , and A. Zupanc, and help from the SNS controls, diagnostics, magnet measurement, RF and 

operations groups. Everyone’s contributions are greatly appreciated. Also the support of SNS 

Management for allowing us the luxury of developing a system from scratch is appreciated.  

REFERENCES 
[1] http://www.sns.gov/APGroup/appProg/xal/xal.htm. 

[2] J. Galambos, et al., “XAL Application Programming Structure”, Particle Accelerator Conference, 

Knoxville, Tennessee, USA, May 2005. 

[3] J. Galambos, et al., “SNS Global Database Use in Application Programming”, Particle Accelerator 

Conference, Portland, Oregon, USA, May 2003. 

[4] C. Allen, et al., “A Novel Online Simulator for High-Level Control Applications Requiring A 

Model Reference”, ICALEPCS’2003, Gyeongiu, Korea, October 2003. 

[5] http://www.jython.org. 

 

 

10th ICALEPCS 2005; P. Chu, S. Cousineau, V. Danilov, J. Galambos, T. Pelaia, A. Shishlo, C.K. Allen et... 6 of 6


