

EMBEDDED EPICS ON ITRON/SH4-BASED CONTROLLERS

G. Jiang, J. Odagiri, N. Yamamoto, A. Akiyama, K. Furukawa, T. Katoh
High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan

ABSTRACT
Many Japanese Ethernet-based controllers being used in accelerator control systems adopt ITRON

for their real-time kernels. Since those controllers have enough CPU power and memory capacities,
IOC core program (iocCore) can run directly on them to realize "Embedded EPICS". The only viable
option to achieve Embedded EPICS on various different controller types is to utilize BSPs available on
the market as they are, since developing BSPs every time we support a new target is too expensive.
Based on preceding investigation on technical feasibility, we have ported iocCore onto a target running
 ITRON on an SH4 CPU [1]. As a result, a fully functional IOC, which has all of the IOC software
components such as Channel Access (CA) server and run-time database, was realized on the
 ITRON/SH4-based target.

In addition, we carried out a ji tter measurement to evaluate the real-time performance of the
 ITRON-based IOC. The result showed that, after fixing a problematic code of EPICS for time
difference calculation, the ITRON-based IOC has the real-time responsiveness as expected.

INTRODUCTION
Traditionally, various field-busses (CAMMAC serial highway, GPIB, Serial, CAN-bus, Profi-bus,

MIL1553, etc.) have been used in accelerator control systems. On the other hand, modern accelerator
control systems use more and more intelligent device controllers with an Ethernet interface. As a
matter of fact, new accelerator projects such as J-PARC [2] and RIBF [3] are going to adopt
Ethernet-based controllers listed in Table 1. This kind of Ethernet controllers can be directly connected
onto the control network to replace traditional field-busses with Ethernet.

Controller Supplier Kernel CPU RAM (min)

MCU Nichizo ITRON SH4 64MB

e-RT3 Yokogawa ITRON SH4 32MB

EMB-LAN100 Custom ITRON SH3 8MB

N-DIM Custom ITRON SH4 6MB

Table 1: Characteristics of some typical Ethernet-based controllers

In Table 1, MCU and e-RT3 are commercial products while EMB-LAN100 [4] and N-DIM are

custom ones. EMB-LAN100 is developed by KEK for the control of power supplies of DTL
Q-magnets of J-PARC accelerator complex. N-DIM is developed by RIKEN for general-purpose
control and monitoring required for the operation of RIBF. The left side of Fig 1 shows how those
Ethernet-based controllers are being used in an EPICS-based control system.

OPI

IOC
VME

Ethernet-based
Controller

Proprietary

protool

CA
Ethernet

OPI

Ethernet-based
Controller (IOC)

Ethernet
CA

Fig 1. Structure of exclusive EPICS controller and Embedded EPICS controller

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.069-4 (2005)

If we imagine the case where only Ethernet-based controllers are used in the system as an extreme
case of Ethernet-based control system, expensive VME computers wil l end up just a protocol
converter from proprietary protocol of each device to EPICS CA protocol, leaving all VME slots
unused. One way to improve this inefficient use of the hardware resource is to replace the VME
computer with an inexpensive computer such as PC104 running Linux. Another way, which is more
sophisticated, is to run iocCore on each Ethernet-based controllers, as shown in the right side of Fig1,
to make them Embedded EPICS controllers.

EMBEDDED EPICS ON ITRON
There are several candidates for the Operating System (OS) to realize Embedded EPICS since

EPICS base 3.14 supports many OSes [5]. In fact, solutions based on Embedded EPICS have been
around on processor cards running VxWorks, Linux or RTEMS [6, 7]. However, in general, Embedded
EPICS tends to be a costly solution because development of BSPs is a time-consuming process. The
cost is inevitable if the target hardware is custom made, and arises every time we support a new target.

On the other hand, in many cases, BSPs come with the hardware if the target is a commercial
product. In the field of Japanese embedded application, ITRON is a very popular real-time kernel [8].
As shown in the Table 1, all of the devices listed use ITRON. Hence we can run EPICS on them
without implementing BSPs on our own once OSD, which interfaces EPICS with ITRON, has been
implemented. Creating a thin layer of device support on top of a BSP will suffice to support a new
target in this approach. We decided to port EPICS onto a ITRON target as the first step toward this
direction.

Hardware

BSP

RTOS (µ-ITRON)

EPICS

OSD (for µ-ITRON)

Supported by
HW manufacture

Hardware

BSP

RTOS (RTEMS)

EPICS

OSD (for RTEMS)

Supported by
EPICS community

Fig 2. Porting iocCore for ITRON can benefit from utili zing existent BSPs

IMPLEMENTATION
This section describes the target hardware/software and the development environment used for the

porting. Some fixes of technical problems found in the porting are also described.

Target hardware/software

As shown in Fig3, we chose Multi Control Unit (MCU) made by Nichizo Electronic & Control
Corporation (NDS) as our hardware platform.

The building blocks of the software required to run iocCore on the MCU are shown as follows:
• Kernel ! we chose NORTi since three devices listed in the table 1, including MCU, are using it.

10th ICALEPCS 2005; G. Jiang, J. Odagiri, N. Yamamoto, A. Akiyama, K. Furukawa, T. Katoh et al. : Embed... 2 of 6

• TCP/IP protocol ! we chose KASAGO TCP/IP protocol stack from Elmic Systems, Inc..

• BSP ! NDS supplies the BSP with the hardware.

Fig 3. MCU by NDS

Development environment

We chose the following products for the build tool chain and the Inline Circuit Emulator (ICE) for
debugging so that the environment matches with that of used to develop the BSP of MCU.

• Super Hitachi Compiler (SHC, Version 8.0.0) with Hitachi Embedded Workshop (HEW)

• PARTNER-Jet: A J-TAG debugger

Building problems of C++ code

Recent versions of EPICS base include lots of C++ code, in which a feature named as Run-time
Type Identification (RTTI) was mainly used to identify the object type in exception handler. A switch
of SHC on RTTI needed to be turned off since objects compiled with RTTI being turned on are not
allowed to be registered to a library.

Though SHC supports Exception basically, there are some missing sub-classes to support Exception.
We have implemented those sub-classes required to compile EPICS.

Implementation of OSD libraries

We have implemented OSD libraries, which are composed of several files, for example, osdEvent.c,
osdMutex.c, osdThread.c, osdTime.cpp, etc. The NORTi native APIs allowed us to implement OSD
libraries just by making wrapper functions around the APIs.

Standard Input/Standard Output on TCP/IP

The iocCore program has its own shell, iocsh, which allows users to interact with the program. The
target device, MCU, however, do not have standard input/output as many of embedded controllers. We
hence designed and implemented a standard input/output on TCP/IP connections on the Ethernet port
of the target. As a result, users can use commands provided with the iocsh program to investigate the
status of database records loaded on the IOC and various threads running in the program. It also makes
it considerably easier to develop programs on the IOC, such as device/driver support modules and so
on.

In addition, we have created another TCP/IP channel in order to download database files from a
remote host to the IOC by using a TFTP-like simple protocol. Together with the standard input/output,
we can boot up the IOC by using a start-up script file on the remote host as we do with usual
VME-based IOCs.

10th ICALEPCS 2005; G. Jiang, J. Odagiri, N. Yamamoto, A. Akiyama, K. Furukawa, T. Katoh et al. : Embed... 3 of 6

Each of the three channels, standard input, standard output and the file transfer channel, has its own
task that handles incoming or outgoing streams of data. A thread on the remote host is supposed to
communicate with one of those three tasks on the corresponding channel.

REAL-TIME PERFORMANCE
In a conventional Ethernet-based system, shown in the left side of Fig 1, all of the control logic

needs to be implemented on the Ethernet-based controllers if real-time responsiveness is needed.
Otherwise, the control logic is separated on both sides of the IOC and the Ethernet-based controller
communicating each other over the network, which cannot ensure real-time responsiveness in any
case.

On the contrary, provided with a real-time OS, such as ITRON, Embedded EPICS can ensure
real-time responsiveness since all of the control logic can reside on a single controller. We have
measured the real-time responsiveness of ITRON-based target to confirm that it has this desirable
feature.

Method of Measurement

The outline of ji tter test is shown in Fig 4:

t t

t t+∆t

Trigger of oscilloscope

Calc
record

Square
wave signal

Output
record

Digital
signal

DA
card

Oscilloscope

Period scan

Voltage
signal

Fig 4: Outline of ji tter test

In Fig4, included in the dashed pane are on the target, MCU. A simple database comprised of an

Analogue Output (AO) record and a Calculation (Calc) record was created for this test. The Calc
record was being processed by periodic scan to produce a square wave signal. The AO record, being
processed by Calc record through a forward link, got the raw value from the Calc record to drive the
D/A card. The output signal of the D/A card was monitored by using an oscill oscope. The signal,
which was shown in the right side of Fig 4, changed its width ji ttering. The jitter arose from the
unpredictable latency of the system due to various causes, such as protection of critical sections from
racing tasks, and limited resolution of the timer that wake up the task sleeping for the periodic scan.
We measured the jitter with changing the value of SCAN field of Calc record from 0.004 second to 0.5
second.

Table 2 shows the hardware/software specifications of the target, MCU, with a D/A card installed.
We have repeated the same measurement on a PC running Linux for a comparison. The specifications
of the PC are also shown in Table 2.

 ITRON platform Linux platform

CPU 200MHz SH4 3.2GHz Pentium4

DRAM 16M 1G

DISK 64M Flash ROM 40G Hard disk

DA card PCI-360116 DA12-4

Tick interval 1 milli second 1 milli second

Kernel version NORTi4 Kernel 2.4.22

Table 2: Specifications of the platforms

10th ICALEPCS 2005; G. Jiang, J. Odagiri, N. Yamamoto, A. Akiyama, K. Furukawa, T. Katoh et al. : Embed... 4 of 6

For both of ∀ITRON and Linux, we have configured the kernels with the tick interval of 1
milli second for a better resolution of the timer.

Analysis of jitter test results

Fig 5 shows the measured jitters on both ITRON and Linux in a preliminary test. The horizontal
axis is the logarithm value of scan period and the vertical axis is the time offset, which is the deviation
from the scheduled time. The length of the vertical line at each measured point shows the range of the
ji tter.

1 10 100 1000

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 Standard Linux
 ITRON without modification

T
im

e
of

fs
et

 (
m

s)

Scan period (ms)

Fig 5: Comparison of ji tter between ITRON and Linux

without modification of EPICS code

As shown in Fig5, we found the ji tter on ITRON, which should have hard real-time responsiveness,

was a few mill iseconds against our expectation of within one tick that arises from the timer resolution.
We hence investigated the EPICS source for the cause to find a problematic code in a function that
calculates the difference between two specified times.

epicsTimeDiffInSeconds (const epicsTimeStamp *pLeft, const epicsTimeStamp *pRight)
{

return epicsTime (*pLeft) - epicsTime (*pRight);

}

In this function, epicsTime is a class defined in EPICS. The function, which creates and destroys the

instances of epicsTime, causes considerable amount of overhead in calculating the time difference
itself.

Since the purpose of the time difference calculation was to specify the duration for the scan task to
sleep, the overhead of the calculation itself brought in an error of one tick or so. We fixed this problem
by changing the function to calculate the time difference so that it does not create and destroy the
objects and repeated the same measurement. Fig 6 shows the result with the modified function. With
that modification, the ji tter was found to be, in most cases, within the range of the resolution of the
timer to meet our expectation of the ITRON kernel being a hard real-time one.

10th ICALEPCS 2005; G. Jiang, J. Odagiri, N. Yamamoto, A. Akiyama, K. Furukawa, T. Katoh et al. : Embed... 5 of 6

1 10 100 1000

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 ITRON with modification

T
im

e
of

fs
et

 (
m

s)

Scan period (ms)

Fig 6: Jitter of ITRON with modification of EPICS code

CONCLUSIONS
We have ported EPICS iocCore onto a ITRON/SH4-based controller in order to investigate a

possibili ty of achieving Embedded EPICS on various types of commercial controllers. We
implemented EPICS OSD libraries for ITRON, compiled EPICS base by using the Super Hitachi
Compiler, and got the iocCore running on the target successfully. This result proved the feasibil ity of
Embedded EPICS on ITRON/SH4-based controllers.

By using this fully functional IOC, we measured the ji tter of periodic execution of a task in order to
evaluate real-time performance of Embedded EPICS on ITRON. We found a problem that is related
with time calculation in EPICS and fixed it. With that modification, the measurement of the jitter
showed that Embedded EPICS on ITRON has the real-time responsiveness as expected.

REFERENCES
[1] G. Jiang, J. Odagiri, N. Yamamoto, et al., "Porting EPICS Core Program onto

micro-ITRON/SH4-based Device Controllers", PCaPAC 2005, Hayama, Japan, Mar. 2005.
[2] J. Chiba et al., "A Control System of the Joint-Project Accelerator Complex", ICALEPCS∃2003,

Gyeongju, Korea, Oct. 2003.
[3] M. Komiyama et al., "Control System for the RIKEN Accelerator Research Facili ty and RI-Beam

Factory", the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Oct.
18-22, 2004.

[4] K. Furukawa, et al., "Network based EPICS Drivers for PLCs and Measurement Stations",
ICALEPCS'99, Trieste, Italy, 1999, p409.

[5] M. Kraimer et.al, "EPICS: Porting iocCore to Multiple Operating Systems," ICALEPCS'99,
Trieste,Italy, Oct. 1999.

[6] G. Waters, et.al, "TRIUMF/ISAC EPICS IOCs Using a PC104 Platform", ICALEPCS'2003,
Gyeongju, Korea, Oct. 2003.

[7] W. Eric Norum, "How to create a simple ColdFire and Altera FPGA IOC (Draft)",
http://www.aps.anl.gov/epics/base/RTEMS/FPGA_IOC.pdf, August 24, 2005.

[8] http://tron.um.u-tokyo.ac.jp/TRON/ITRON/home-e.html.

10th ICALEPCS 2005; G. Jiang, J. Odagiri, N. Yamamoto, A. Akiyama, K. Furukawa, T. Katoh et al. : Embed... 6 of 6

http://www.aps.anl.gov/epics/base/RTEMS/FPGA_IOC.pdf
http://tron.um.u-tokyo.ac.jp/TRON/ITRON/home-e.html

