
SECURE CLIENT TIER

FOR THE ACCELERATOR CONTROL SYSTEM

A. D. Petrov, D. J. Nicklaus

Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

ABSTRACT

The central part of the Accelerator Control System at Fermilab is a cluster of Java Data Acquisition

Engines (DAEs). In order to read or set data, an application needs to connect to one of the DAEs

through the plain Remote Method Invocation (RMI) protocol. As the system grew over the past

decade, new security concerns appeared. The existing client-server communication protocol failed to

meet higher security requirements, because it employs fairly simple rules of authentication and does

not support either encryption or data integrity checks. Besides that, the API providing access to all

functions of the control system seemed to be too complex for inexperienced client application

developers. Therefore, it was decided to introduce an intermediary level in the architecture between

DAEs and client applications. This tier, named Secure Controls Framework (SCF), provides security

for the client connections and offers new simplified API for Control System access. In the SCF,

security features are implemented on the transport level by means of the Kerberos V5 protocol. They

include strong user authentication and encryption (or message integrity codes) applied to the network

traffic. Special attention was paid to automation of the authentication process and making it less

annoying for the users. A generic Kerberos implementation in Java was extended to support various

types of ticket caches, including memory caches on Windows and Macs, and implement an automated

ticket discovery. The rewritten control's API is based on a new object-oriented data model. Legacy

data structures, such as devices, arrays, properties, and scaled values were described as Java classes in

a way that simplifies their usage in client applications.

INTRODUCTION

Rapid development of information technologies in recent years has caused new security issues to

emerge. Continual on-line attacks, viruses, and malicious software forced the networking

administrators to take measures, such as installing firewalls and establishing stricter security policies,

in order to protect the systems they are responsible for. Up to recent times, however, the scientific

community rarely paid enough attention to these issues: this was a quite controlled environment and

the data were not very attractive for disruption. Thus, the developed custom software did not use

adequate means to protect the information. Since scientific labs are now targets of on-line attack like

anybody else with relatively little security built into the custom software, all the information security

has relied on the network facilities. Such network traffic filtering often makes it impossible to get

data from a central system to the client applications, unless they are running on a limited secure

network. The standard solutions, such as VPN, introduce additional complexity levels and sometimes

do not work because of incompatibility with the proprietary programs and protocols.

For a large data acquisition and control system, the networking tools alone can hardly provide the

level of security that is adequate yet flexible enough for a wide user community. It is essential to

implement some reliable authentication algorithms, as well as protection of communication channels,

inside that system itself. These security features must be based on reliable and publicly approved

protocols in order to satisfy the formal requirements that may arise.

In this paper, we discuss the design of the Secure Controls Framework, developed as a part of

Fermilab's Accelerator Control System. The project aims to base the control system security functions

on an independent infrastructure. Although the SCF has a very specific field of application, this

technology is general enough to be employed in other systems where data protection is required.

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.034-3 (2005)

ARCHITECTURE

The central part of the Java Control System [1] at Fermilab is a cluster of about 100 Data

Acquisition Engines. They obtain and consolidate the front-ends' data, run central services, such as

data loggers, and provide communication with the client programs. DAEs talk to the front-ends and

between each other with the proprietary ACNET protocol. Client applications connect to the engines

through Java RMI over plain TCP/IP. A common data acquisition (DAQ) API is used on the clients, as

well as on DAEs, to read and set data.

In the existing design, all the engines reside on a secure network. The incoming traffic is controlled

by a firewall. Neither ACNET nor the data acquisition RMI is allowed to reach that area from the

outside world and some parts of the lab. The client programs have restricted connectivity to the DAEs

because of the lack of security in the DAQ API, which has a fairly simple authentication system and

communication channel vulnerabilities.

Many controls applications at Fermilab are designed to provide data for a broad community of

scientists and engineers. They should be able to run their tools from many locations, both inside and

outside the laboratory. Although the detailed regulations are to be defined by a security policy, there

is a need to have technical means providing such kind of access. Changes in the existing DAQ API

were not desired because it is very complex and is being used on the running system. In one solution,

the data were provided by dedicated web-services. Although that allowed isolation of the engines, it

did not guarantee much security and had many other disadvantages. It was proposed to design a new

simplified API suitable for the tasks usually performed by the client applications, and develop an

implementation that would satisfy the security demands.

The introduced Secure Controls Framework consists of the server and the client parts. These parts

communicate through Java RMI with an encryption algorithm built inside the underlying TCP/IP

ports. The clients are using a strong user authentication protocol, a simplified version of the data

acquisition API, and a new object-oriented data model. The SCF servers handle remote sessions, and

convert user credentials and incoming data requests in a conventional form understandable by DAEs.

Physically, the servers are running along with the engines on the same hardware.

Fig 1. Secure Controls Framework Architecture.

As an addition, SCF provides access to some essential database resources through ad hoc requests.

The databases are located within the restricted network and normally are not directly available from

the outside.

10th ICALEPCS 2005; A.D.Petrov, D.J.Nicklaus et al. : Secure Client Tier for the Accelerator Control System 2 of 5

THE CHOICE OF A SECURITY PROVIDER

A few years ago, Fermilab adopted the Kerberos V5 protocol [2] as a uniform security solution.

This infrastructure, including client utilities, has been installed on a vast number of computers

throughout the lab. When people started using it for common network services, such as rlogin and ftp,

it becomes a routine to get a fresh ticket every morning. The Kerberos ticket (which essentially is a

piece of binary data stored in a local file or in the memory) represents the user's identity for a certain

period of time and can be used to request access to remote hosts. In that way, almost all the users have

had a reliable platform-independent digital credential on their machines that could be used to secure

the controls data.

Kerberos allows the authentication procedure to be inconspicuous for people and less annoying than

asking passwords. As soon as the valid ticket is available, an application can use it to verify the user's

identity and open a secure communication channel. This can be considered as an alternative to X.509

certificates providing similar capabilities. The Kerberos infrastructure, however, is quite different

from the Private Key Infrastructure (PKI) engaged in the certificates issuance and distribution.

Fermilab uses PKI for some applications, but the Control System has become oriented on Kerberos.

The Kerberos protocol provides strong authentication of principals with a high degree of robustness

without requiring physical security of all the hosts on the network. To transfer credentials between two

hosts, a technology named General Security Services (GSS) API [3] can be employed. As a result of

the GSS handshake, two peers can establish a common security context and use per-message security

services.

Another advantage of Kerberos is that the Control System no longer needs to keep and manage an

extensive list of its users. All the principals are already stored in the central Key Distribution Center

database, maintained by someone else with lab-wide responsibility. Even though the controls system

might not have the link to it, a valid GSS context on the server always represents a legitimate user on

the client. If needed, this user later can be tracked down, but for a while he or she has default

privileges and can start working immediately. For the most users, these default privileges are

sufficient to conduct their job.

Java SDK includes an extensive support of Kerberos V5 and the related GSS-API. Yet, there were a

few serious drawbacks that required a workaround. The first problem was in the way Java searched for

a Kerberos ticket�it was too simple and did not work reliably on all configurations we have had. The

second problem was inability to read tickets from the operating system memory. Besides that, Java 1.4

did not provide an implementation for Kerberos cipher suites for the Transport Level Security (TLS)

protocol.

AUTHENTICATION IN KERBEROS

The essential issue is an efficient acquisition of the Kerberos ticket granting ticket (TGT) that

represents the user's credential.

It was decided not to request TGT in Java, but always read it from an external cache created by

other utilities, such as kinit and Leash32. One of the reasons is not to deal with the Kerberos

password, which is highly sensitive information: It is quite difficult to figure out whether a program is

running on X terminal where password exposure is unwanted. Another reason is to keep using the

tools that have already being used and have become habitual. Unfortunately, the generic

implementation in Java (Krb5LoginModule) can not handle all the variety of configurations in the

laboratory. It does not support memory caches, either.

In order to address those problems, a completely new Kerberos authentication module has been

developed [4]. It is based on the regular Java concept of login modules. But unlike the generic

implementation, the order in which the tickets are looked for is strictly defined for every operating

system in the configuration file and can easily be adjusted.

The second important feature of the custom module is the support of memory caches. On Windows

2000/XP and Mac OS X the tickets can be stored in the operating system memory. To read them, one

needs to use a native API. The module includes two native libraries that are called through JNI.

10th ICALEPCS 2005; A.D.Petrov, D.J.Nicklaus et al. : Secure Client Tier for the Accelerator Control System 3 of 5

As will be described below, the server-side services also have to be authenticated. In most cases,

this is done through keytab files that store secret keys (equivalents of passwords). The module

provides the service authentication as well.

The Kerberos authentication module can be reused in other applications and applets. It is now

available as an open source product.

SPECIAL USERS

In practice, we found a few places in the system where Kerberos authentication should be bypassed.

In the Accelerator Control System, there are several control rooms with restricted physical access. The

staff working there does not use Kerberos, but must be able to run the same software as other people.

In SCF, that small group of users is authenticated by their host addresses. Each operator's console has

a record in the database that indicates its corresponding default user name. All such nodes must be

located in the area served by trusted network routers, to prevent IP spoofing.

TRANSPORT LEVEL SECURITY

In order to secure the communication, two authenticated nodes must establish a common security

context, defined in Java in the GSSContext class. In a general case, on one node there is a user, and on

another one there is a service. To create a GSSContext, the two hosts exchange few tokens via the

insecure channel. The initiative always comes from the client. Upon completion of the handshake, the

GSSContext instances on both ends get initialized with the opposite party's information and a secret

key needed to proceed with the security services.

Security services provided by GSSContext include: encryption, message integrity codes (MIC),

sequence detection, and replay detection. While a real encryption is hardly needed for the Control

System, the MICs work as digital signatures and ensure that messages are coming from the legitimate

party. The GSSContext class can “wrap” and “unwrap” streams to apply these features.

The standard Transport Level Security (TLS) protocol can support Kerberos [5]. However, Java 1.4

does not provide such an implementation. The SCF uses our own extensions of SSLSocket and

SSLServerSocket that perform the GSS handshake and wrap/unwrap operations over the streams. The

goal here is to comply with the standard specification from the RFC.

The new secure sockets are used in RMI through the corresponding RMISocketFactory.

DATA ACCESS

The Accelerator Control System is using a comprehensive Data Acquisition API. Its main idea,

however, is quite simple�to read or set data, a program needs to create the data acquisition job with

four parameters: source, disposition, item, and event. Over the time, most of the entities of the real

system, such as the accelerator, data loggers, devices, and clock events, have been described in those

terms. As this implementation includes a large amount of Java classes with many methods, it becomes

less understandable for the occasional developers. This is one of the categories of users the Java

Controls was intended for. The DAQ implementation complexity leads to a significant size of libraries

(jar files) required for the data acquisition. Now it reaches at least 5.5 megabytes for a typical

application. This makes it harder to create “thin” clients.

The SCF offers a simplified data acquisition API and new data structures. The idea of a

four-parameter jobs stays unchanged, but the actual number of classes used, and the set of their

methods have been significantly reduced. This reduction has been made at the expense of objects that

are specific to the server-side operation and are rarely used in the remote applications.

For the data acquisition job items, completely new object-oriented data structures have been

designed. These items are basically accelerator devices. In the legacy system they include a set of

properties (reading, setting, control), and sometimes can be treated as an array, combined in

composed structures, etc. The new model keeps all the elements in a hierarchical order and makes it

possible to use the single object to get a device description from the database, to start a job, and to

retrieve readings. Examples of the actual structures can be found in [5]. The server side converts

10th ICALEPCS 2005; A.D.Petrov, D.J.Nicklaus et al. : Secure Client Tier for the Accelerator Control System 4 of 5

between DAQ and SCF data formats in both directions.

Besides getting data from the engines, the client applications need to have access to several

important central databases, such as devices, parameter pages, and data logger items. SCF provides a

flexible mechanism of pluggable modules each of which defines ad hoc requests to one database.

These modules are deployed on the server side. On the clients, the Java Naming and Directory

Interface (JNDI) is employed to obtain the data. Unlike in the conventional database access, the

outcome of JNDI operations is pre-cooked Java objects rather than plain datasets.

The size of jar-files normally needed for a SCF client is around 300 kilobytes.

CONCLUSION

This paper has reviewed the design of the Secure Controls Framework, a new component of the

Fermilab's Accelerator Control System meant to improve security for client applications. During

development of the project, the concept of using an independent security infrastructure for the control

system has been proven, and many practical details of such integration has been studied. The results

of this work can be used in the design of new distributed control systems where reinforced data

protection is required.

REFERENCES

[1] J. F. Patrick. ACNET Control System Overview.

http://beamdocs.fnal.gov/cgi-bin/public/DocDB/ShowDocument?docid=1762

[2] RFC 1510: The Kerberos Network Authentication Service (V5).

http://www.ietf.org/rfc/rfc1510.txt

[3] RFC 1964: The Kerberos Version 5 GSS-API Mechanism.

http://www.ietf.org/rfc/rfc1964.txt

[4] A. D. Petrov. Using Kerberos Authentication In Java.

http://beamdocs.fnal.gov/cgi-bin/public/DocDB/ShowDocument?docid=1502

[5] RFC 2712: Addition of Kerberos Cipher Suites to Transport Layer Security (TLS).

http://www.ietf.org/rfc/rfc2712.txt

[6] A. D. Petrov. Secure Controls Framework User Guide.

http://beamdocs.fnal.gov/cgi-bin/public/DocDB/ShowDocument?docid=1515

10th ICALEPCS 2005; A.D.Petrov, D.J.Nicklaus et al. : Secure Client Tier for the Accelerator Control System 5 of 5

