
Enhancements of the Filling Pattern Controls at the Swiss Light
B. Kalantari, T. Korhonen

Paul Scherrer Institute, Villigen, Switzerland

ABSTRACT
Right after commissioning, the Swiss Light Source (SLS) operation was started with top-up being the
most common operating mode. The control of the storage ring filling pattern was in the beginning
limited but covered the basic needs. With time the demands from machine experts, experiments and
beamlines have grown and to support these we have added applications to support new operating
modes and a filling pattern feedback (FPF). As multiple subsystems (i.e. IOC’s running EPICS) are
involved, we have had conflicts between the applications. To resolve these conflicts we have
redesigned the software algorithms for injection control in a way that guarantees the coordination
between different subsystems that have to function synchronously. We designed the application so that
the real-time actions are synchronized via timing system and do not depend on the network (EPICS
channel access). In this paper we describe our experiences and motivations for upgrading and the
methods as well as algorithms involved in our software redesign.

INTRODUCTION

As top-up operation [1] is becoming routine in many advanced third generation synchrotron light
sources, applications related to it are also highly on demand [2]. One of the delicate and challenging
issues in this context is the control of bunch pattern in top-up mode [3]. Although the principles of
bunch pattern controls are very similar, the implementation can vary from one synchrotron light
source to another. The implementation and quality of such kind of controls of course depend on
control system, timing system, diagnostics and injection system, their flexibilities and coordination
between the systems involved.

Bunch pattern controls can be implemented using open loop and feedback methods. In the open loop
method no charge per bunch information is used. Depending on the flexibility of the timing system
and controls, one or more specific sequences of the filling can be achieved. These are in principle
different flavours of targeting one bunch (or a chain of bunches) sequentially one after the other. In the
top-up mode with this method only the total accumulated charge in the storage ring determines when
to start or stop injection process. Depending on the controls and timing system this method may still
provide with required filling patterns in a limited extent due to lack of charge per bunch information.

In the feedback method in addition to all controls in the open-loop method, we have information about
individual bunch currents. Using measured bunch by bunch current various filling strategies can be
implemented. In principle in this method it is possible to achieve and maintain any arbitrary bunch
pattern in the storage ring [3]. Individual bunch currents are measured using different methods, e.g.
measuring the signal from beam position monitor (BPM) pick-ups, avalanche photo diodes (APD) or
photon multipliers.

When all required systems are available and have the required quality to perform bunch pattern control
using the feedback method, the remaining concern is how to design and implement the whole process
so that it guarantees a reliable and safe operation. In the following we describe the problems which
occur in practice and how we could handle them with a flexible design.

COORDINATION OF DISTRIBUTED COMPONENTS IN FPF

The SLS control system is based on the EPICS toolkit[4]. Almost every component is controlled via
EPICS. The major control subsystems contributing in FPF can be summarized as the following:

• Bunch pattern acquisition system

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.007-2 (2005)

• Linac timing

• Overall timing

At the SLS (controls of) each of these components are integrated in an IOC (Input Output Controller).
IOC’s are running EPICS and perform real-time controls under vxWorks using dedicated hardware
and local CPU cards.

Bunch pattern acquisition consists of a fast digitizer which reads the bunch pattern provided by an
APD [3]. The digitized filling pattern is then conditioned and processed to provide a list of the bucket
numbers to be targeted at the next top-up cycle. This is done by comparing the actual bunch pattern
and the reference bunch pattern which can be of any arbitrary shape like a rectangle or a sine wave or
a comb etc.

Linac timing provides the synchronization and triggering of the linac in order to make a successful
injection of particles in a specific bucket number in the booster synchrotron.

Overall (main) timing IOC is the central component that coordinates all the synchronous
software/hardware actions by sending timing events for example to trigger pulsed magnets at the right
time in order to extract accelerated particles from the booster and inject them into the specific RF
bucket in the storage ring. Distribution of the timing signals (event) is done via a dedicated network
which connects the overall timing IOC (event generator) to all the timing signal (event) receivers in
other IOC’s in a star shape.

Figure: relation of the subsystems involved in filling pattern controls

Originally in the filling pattern controls application, we could just determine start and end of bunch
train and their spacing and number of shut per bunch in a very simple application. A bucket counter

C

P

U

E

V

R

C

P

U

E

V

R

C

P

U

E

V

G

LAN

Timing events

Filling pattern IOC

Overall timing IOC

Linac timing IOC

Actual filling from APD

Target
bucket

list
(CA)

Target bucket list (CA)

E

V

R

C

P

U

Injection controls IOC

E-gun trig

Pulsed magnets
trig

10th ICALEPCS 2005; B.Kalantari,T.Korhonen et al. : Enhancements of the Filling Pattern Controls at the S... 2 of 6

could be incremented by programmable steps from the start till the end of the bunch train. Whenever it
reached the end it rolled over to the starting bucket number again and so on. This worked out quite
fine at the time we had no FPF involved.

The filling pattern feedback system then separately was developed with a dedicated IOC in charge of
the controls of that system. The task of this IOC is to get the bunch pattern and according to some
algorithms and having bunch current information to specify the next buckets to be injected to in the
coming top-up cycle.

The problem comes up where the bucket numbers to be targeted are determined in the bunch
pattern acquisition (filling pattern) IOC and the overall timing as well as linac timing need to
know each bucket number in order to perform synchronised action to achieve injection in that
bucket at each injection repetition rate (in SLS case 3 Hz). The only way to communicate the
bucket numbers is the network and more precisely CA protocol in EPICS (see Fig. 1). The
non-real-time nature of the network cannot guarantee sending the information shot by shot
(e.g. 3 Hz). It happens occasionally that these transactions do not reach the destination at the
same time due to condition of the network and its instantaneous traffic load, etc. As result of
such delays sometimes the target bucket number in overall timing IOC is not the same as that
of linac. Therefore the required coordination is lost and the particles are injected to a wrong
RF bucket in the storage ring. That produces in turn an uneven filling pattern which may even
affect the orbit stability in some extent.

Figure 1: communication of the IOC’s in filling pattern controls

The other problem that we used to suffer from was handling of the camshaft mode which had a
dedicated software application in the open-loop bunch pattern controls. The method to inject to single
isolated (camshaft) bucket was to stop (freeze) sequential bucket (Fig. 1) counter which fills the bunch
train and change the bucket numbers to be filled to the camshaft bucket number. Of course the bucket
number had to be sent to linac and overall timing IOC via CA and the previous problem shows up
again. The result was in this case even worse because sometimes releasing the sequential bucket
counter from the frozen state could not occur in time (synchronous to other conditions) and it could
result to a very high peak current in a single bucket.

Current-bucket Current-bucket

Bucket counter Bucket counter 3Hz event

Process local in
Overall timing IOC

3Hz event

Process local in
Linac timing IOC

Injection
condition

BO_EXT delay GUN_TRG delay

CA

Filling pattern IOC

Stop counters

CA CA

Write
target buckets

one by one

Problems

10th ICALEPCS 2005; B.Kalantari,T.Korhonen et al. : Enhancements of the Filling Pattern Controls at the S... 3 of 6

To address these problems we tried to define a single method which could handle all modes of the
bunch pattern controls and guarantee the real time behaviour in all cases avoiding the nondeterministic
behaviour of the (Ethernet) network.

In the new approach (Fig. 2) instead of the bucket number counters (old method) the application
maintains an index counter of an array holding the target bucket numbers in both timing IOC’s. The
local applications need only to increment or reset the index counters synchronously. The perfect
synchronization is achieved then by controlling the index counters using the global timing events. For
example at the SLS the 3 Hz event of the injection repetition rate is used to increment this counter for
each successive injection shot. Each IOC at a time and synchronously should know the current target
bucket number (CUR_BKT) variable in order to adjust the required timing. The negative numbers
indicate no injection should occur (Fig. 2).

The filling pattern IOC on the other hand, would care just about the content of the arrays holding the
target bucket numbers which in turn depend on mode of accelerator operation, desired filling pattern,
FPF status (active/idle) etc. It writes the array of the target bucket numbers to both timing IOC’s
through network via CA. However, this is much less frequent than injection repetition rate. If the FPF
is active (feedback method) the arrays are updated each top-up cycle which is something between 3 to
5 minutes depending on the beam lifetime and top-up current dead band, if FPF is idle (open-loop
method) then target bucket numbers (arrays) will be changed only when operator asks for a new
pattern different from previous one e.g. changing from a simple bunch train to camshaft mode.

Figure 2: Injection synchronization in Linac and overall timing IOC

FILLING PATTERN FEEDBACK (FPF) ALGORITHM

Generally in the filling pattern controls there is always a reference pattern and the application tries to
establish that pattern in the storage ring. The prefect case is achieved when the FPF is active, then the
actual charge distribution in the storage ring can be a perfect match to the reference pattern and the
amount of charge in each single bucket can be controlled very well.

The FPF algorithm is basically implemented as the following steps:

Overall timing Linac timing

BKT_LIST={4, 121,…, 33, 289, -1,-1,…,-1}

CUR_BKT=BKT_LIST[ix];
Adj. BO_EXT delay;

Incerement ix;

BKT_LIST[ix] < 0

 3Hz
event

inj conditions
fulfilled?

ix=0

No

No

Yes

Yes

process

BKT_LIST={4, 121,…, 33, 289, -1,-1,…,-1}

CUR_BKT=BKT_LIST[ix];
Adj. GUN_TRG delay;

Increment ix;

BKT_LIST[ix] < 0

3Hz event inj conditions
fulfilled?

ix=0

No

No

Yes

Yes

process

10th ICALEPCS 2005; B.Kalantari,T.Korhonen et al. : Enhancements of the Filling Pattern Controls at the S... 4 of 6

• Acquire the actual filling pattern in the storage ring

• Compute the difference of the scaled actual and reference patterns

• Specify the next target buckets to minimize the difference of the actual and reference pattern

Reference Pattern Generation

Part of the application in the filling pattern IOC is in charge of the reference pattern generation (see
Fig. 2). That has three modes or pattern options: Default, Camshaft and Define.

In the first case (Default) it generates a simple bunch train from a start point until an end point which
can be set by the user. The Camshaft mode takes more parameters in addition to the Default case
which are single isolated bucket number and its amplitude. In fact it generates a bunch train plus an
isolated bucket anywhere in the range of the total bucket numbers (harmonic number of the storage
ring) with any desired amplitude. In the Define mode, the reference pattern is read from a text file
provided by user or experts. The text file is a column of numbers which represents the desired relative
charge distribution. Each row corresponds to a bucket number. In our case (SLS) this would be a
single column in 480 (harmonic number) rows. A zero value in this column shows no injection in that
bucket number.

Figure 3: Reference Pattern Generation

FPF algorithm

When the reference pattern is determined and the user starts FPF, the algorithm shown in Fig. 4 is
executed after finishing each top-up cycle. By a top-up cycle we mean a series of injections which
results in filling up the storage ring with dead-band current. For example SLS is operated now at 350
mA top-up plus 1 mA dead-band. A top-up cycle then means process of consequent injections (in
different buckets specified by FPF) to fill up the ring when it goes less than 350 mA until it reaches
351 mA.

Whenever a top-up cycle finishes overall timing IOC distributes a global timing event. The event
receiver in the filling pattern IOC receives that event (as all event receivers do) whereupon the FPF
algorithm (Fig. 4) is executed. The application first checks if FPF is in active state which means to
check if FPF has been requested by the operator and if the beam current is above a certain limit. Then
it starts bunch pattern acquisition by enabling a fast digitizer to read the pattern for many turns and
average them. Then the acquired pattern is transferred to the IOC, scaled and subtracted from the
scaled reference pattern. This difference waveform is then sorted from the smallest element to the
biggest to determine how far the charge in each bucket is with respect to the reference pattern. This
determines injection priority of each bucket for the next top-up cycle. The FPF application keeps each

SET- PAT
Gets and processes inputs,

Create desired pattern

Pattern options

Other parameters Predefined text file
(Charge distribution)

Reference waveform

10th ICALEPCS 2005; B.Kalantari,T.Korhonen et al. : Enhancements of the Filling Pattern Controls at the S... 5 of 6

time a list of the previous bucket numbers which were targeted and at each turn of execution verifies
the result by comparing that with the difference waveform. If it finds out that most of the targeted
injections were not successful it tries to find the offset and stops. A calibration procedure has been
foreseen to correct the offset. When the FPF stops for what ever reasons the filling pattern controls
switches to the open-loop mode but still to try to follow the reference pattern in a very limited extent
of course.

Figure 4: FPF algorithm flowchart

CONCLUSION

By changing the filling pattern software structure we have achieved reliable and robust controls over
the filling pattern mechanism at the SLS. One of the main point was to understand the real-time
requirements and try to separate them from no-real-time ones. The real-time actions are controlled
then via the global event system (timing system) and the rest of the controls are handled via the
network and CA.

REFFERENCES

[1] M. Munoz and A. Luedeke, “Top-up Operation at the Swiss Light Source”, EPAC02, Paris,
France, June 2002.

[2] B. Kalantari and T. Korhonen, “Enhancements of Top-Up Operation at the SLS”, EPAC04,
Lucerne, Switzerland, July 2004.

[3] B. Kalantari, T. Korhonen and V. Schlott, “Bunch Pattern Control in Top-up mode at the SLS”,
EPAC04, Lucerne, Switzerland, July 2004.

[4] http://www.aps.anl.gov/epics/

Filling pattern IOC

Scale ref-WF with accumulated current

init
read default Ref-WF
initialize BKT_LIST’s

FPF
active?

 Top-up off

Timing
event

Reorder ref-WF/act-WF
shift zeros to the end

Scale act-WF with accumulated current

dif-WF = ref-WF – act-WF

sort dif-WF from high to low;
update target BKT_LIST;

ref-WF: reference pattern
act-WF: actual pattern
dif-WF: difference of ref and
act

Yes

No

Calculate/update BKT_LIST
depending on the operating mode

Verify previous injections;
determine

calibration offset & correct

Write target bucket array to
overall and linac timing IOC

10th ICALEPCS 2005; B.Kalantari,T.Korhonen et al. : Enhancements of the Filling Pattern Controls at the S... 6 of 6

