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ABSTRACT 

There are two main drawbacks to developing client control system applications independently: from 

the user’s standpoint, the resulting applications miss visual and behavioural consistency and do not 

support data exchange between applications; from programmer’s standpoint, independent development 

amounts to code replication. Attempts to define a client-side framework can fail because the resulting 

code is bulky and contains too many dependencies to be easily understandable. In our previous work 

we have demonstrated the basis for data exchange using meta-data descriptions; here we focus on how 

Eclipse helps us solve the second, namely the “monolithic framework” problem. Eclipse, an open 

source Java IDE, has proven to be a huge success, containing code contributions from both small 

private and major industrial partners. Recently, Eclipse has been split into a Rich Client Platform 

(RCP) and a set of IDE modules running on top of it. RCP itself forms the “generic Workbench” that 

includes component framework based on OSGi specification, application services (logging, resources, 

configuration) and complex GUI abstractions (wizards, preference pages). Everybody is free to take 

Eclipse RCP and develop applications on top of it, with some big physics labs already having done 

that (NASA, LANL). We show how using OSGi – the Eclipse component model – one can develop 

component sets that the framework glues together to form applications. Different visualization 

components integrate into the workbench as “actions” that can be triggered on the relevant “data 

sources” (e.g. chart for numeric channels, command execution for devices, etc). New components, 

both visual and programmatic, can be added by simply putting their respective jars in an “Office” 

directory, and the framework takes care of loading, updating from the web, dependency resolution, 

authentication checks and so on. We think that Eclipse, as it did for the IDE world, also brings into 

control system domain the long-awaited ability to evolve applications as a growing set of components 

developed by different labs. 

INTRODUCTION 

In the field of control systems the development of software often has not followed the top-down 

approach, where the user experience is the driving force behind programming. On the contrary, 

pushing data from acquisition layer up onto the client machines, frequently in a relatively unprocessed 

form, seems to be the norm. Consequently the effort expended on studying and implementing “office-

like” tasks and gestures (copy & paste, drag & drop, file operations, undo, browsing, common data 

visualizations, forward and backward navigation; see [1] for functionality breakdown) is wasted, 

because 3rd party products cannot integrate easily with non-annotated [6] data streaming in from an 

external source. As a result features are left unimplemented or are added later at a high cost through 

in-house development. 

As part of a project called Control System Office (or CSO; see [4] for the overview) we decided to 

examine available application frameworks (see [2] for evaluation results) and have selected Eclipse as 

the platform that both defines the OSGi compliant [3] component architecture, as well as provides 

complex GUI components, such as property tables, wizards, perspectives and views.  The project is 

currently in the design phase, and is hosted on [5]. Its purpose is to define Eclipse plug-ins that adapt 

the Eclipse Rich-Client Platform environment for development and execution of control system 

applications. 

This paper discusses the crucial component of the project, the Data Access Layer or DAL. In its final 

implementation, DAL will be wrapped as Eclipse plug-in that will bridge the gap between Eclipse 

framework and a number of specific control system architectures, such as EPICS Channel Access, 

TINE, TANGO, ACS and possibly others. The primary goal of DAL is to deliver the data from the 

control system in a form that is easily processed by generic applications and components [7] as well as 

used in manual programming. 
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ARCHITECTURAL REQUIREMENTS FOR DATA ACCESS LAYER 

The form of DAL is an OSGi conformant API, 

containing core and pluggable code. 

Core DAL, including a Request / Response based 

interface which we call reactor (see Figure 1), is 

the code shared between all control systems; glue 

or pluggable code is the functionality that has to 

be implemented separately for each system in 

order to support shared functionality. Plug code 

sets are different and separate implementations of 

the same DAL interface set. Distributionwise, this 

will mean that DAL comes as a core plug-in and a 

set of dynamically loadable glue-code 

components that extend the core plug-in. Multiple 

plug implementations must concurrently execute 

within the Eclipse environment, if necessary. 

 

DAL will address the following functionality: 

Direct data exchange. Given a string name that 

has a meaning in the underlying control system, 

DAL will be able to fetch or set the related value 

bound to that name (with all traditional semantics, 

such as single get/set, monitor etc). 

Name resolution. If the underlying system 

supports name queries and hierarchical namespace 

as defined by JNDI (Java Naming and Directory 

Interface), DAL will enable the access to the 

name service, including querying for the existence 

of the name, for the type of entity bound to the 

name, and obtaining a list of entities at certain 

hierarchical level. 

Meta-data interface. Name service can be 

extended into a directory service by providing a 

set of attributable data for each named node. In 

case of control systems and as discussed in the Whitepaper [1], the relevant attributable information is 

the meta-data description of the entity bound by a certain name. Such information may include, but is 

not limited to, the notion of type, supported requests and responses for a given entity, type of viewer 

components to be used for interaction with the entity, semantic description of the provided data (i.e. its 

changeability, typical duration, composition if it is a structured type and so on). Meta-data directory is 

also the mechanism for defining virtual data sources [see 12 for definitions]. DAL does not specify the 

meta-data interface, although its design must enable the support for it, to be added as a separate 

component later on. Our intention is to design such component as the next step in CSO project. 

 

Design foundations 

DAL builds on top of several existing architectures. Firstly, as a requirement, it must provide interface 

similar to the Java Channel Access in order to ease transition for the programmers. Secondly, it 

follows the precedent of Channel Access for Java [8] and cleanly separates the reactor (RQ/RP) code 

from the Channel-like interface sitting on top of it (as will be discussed in the next subsection). 

Thirdly, it draws ideas from Abeans Datatypes and metadata directory to define data objects and 

metadata exchanged with the control system, which should enable it to talk to both channel-based 

(CA, TINE) and device-based (ACS, TANGO) control systems. Lastly, it captures the intuition of 

TINE that packed data access  [see 13 for definition] is an important ingredient of a successful control 

system. 

Figure 1: A broad outline of the 

components running within Eclipse 

framework (upper rectangle): DAL is 

represented by a pentagon (plug) with 

Request (RQ) / Response (RP) interface 

serving as a gateway between the remote 

system (lower rectangle) and the orbit 

correction application that uses it. 
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Different views of the control system 

The control system field has witnessed a long-standing debate between wide (e.g. device based) and 

narrow (e.g. channel based) control systems [9]. In addition to its being a matter of taste, it is also a 

matter of convenience: while wide interface stresses the modelling aspect of the system – how 

complex devices that have one state are 

broken down into a number of actions and 

properties – the narrow interface 

emphasizes the operational aspect, in 

which most often used actions are carried 

out on sets of properties that span multiple 

devices. Let us redefine the narrow 

interface as the request / response interface, 

a connectionless data exchange mechanism 

with flat addressing (i.e. no hierarchy is 

implied in the modelling objects, such as a 

device object containing properties; or a 

channel object containing fields). A request 

with a named target in the remote layer is 

submitted into the system, and it generates 

one or more asynchronous responses as a 

result. No connection is established 

beforehand; and no connection needs to 

be explicitly broken. [10] 

Clearly any object-oriented interface can 

be implemented as a veneer on top of 

such narrow interface: for example, the 

familiar Channel classes produce 

appropriate requests and unpack the 

resulting responses, thus exposing a higher level view of the system to the channel user. 

However, there is a variety of cases (especially when independently produced components talk to each 

other), where the low level interface might be preferable: scripting requests from jython or terminal-

like component within Office, serializing requests (e.g. transmitting them through the Web by XML 

encoding), submitting batches of requests at once, using generic applications (e.g. Object Explorer, 

applications that store state snapshots etc), exchanging data by drag and drop and so on. 

Furthermore, an efficient implementation will usually employ some sort of reactor scheme internally, 

even if it does not expose it. What is being proposed here as an important point in our opinion is to 

make a formal split between low level reactor (RQ/RP) component and the model (channel, which 

depends on reactor), and expose both interfaces to other Eclipse components, as depicted in Figure 2, 

so that each one can be utilized as needed for different purposes [1]. 

DATA ACCESS LAYER FEATURES 

The design of DAL requires us to examine the following four aspects. Firstly, specifying direct data 

exchange involves describing what kind of requests and what kind of responses the reactor will 

process, and how these will map into object-oriented channel interface; in addition, we need to 

describe the datatypes, i.e. objects that are passed as request input arguments and response return 

values. Next, specifying name resolution and metadata requires elucidation of how the remote data 

sources can be uniquely named; how the implicit hierarchical structure in these names can be 

explicitly declared in the directory, and how the directory obtains its data from the control system 

name service through the plug (see Figure 2). Lastly, as DAL is a part of Eclipse infrastructure, we 

need to state where and which extension points it defines and how they relate to the components that 

we expect in the suite. 

Figure 2: Two-layered structure of DAL. Both channel 

and reactor interfaces are exposed to other components, 

one of them being the metadata directory depicted here. 

The code snippets are illustrations of how each layer 

can be used. 
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In next subsections we present some features that we found important and a subject of general interest, 

and we propose a corresponding solution for each; an in-depth analysis is provided in [11]. 

Data Exchange 

1. Optionally stateless connection at Reactor level, explicit connection at Channel level 

When submitting requests directly into the reactor, the connection to the remote data source (e.g. 

channel) need not be established first by a special ‘connection’ request – it is up to the plug to manage 

a transparent connect and disconnect if no requests are pending after a period of inactivity. However, 

an asynchronous connection request is defined: if it is submitted, a response notification must be 

generated by the plug, the remote resource cannot be released until the explicit disconnection is 

requested and each failed link must be reported (if detected) as a response to the connection request. 

Channel class is stateful and issues connection and disconnection requests when its appropriate 

methods (CONSTRUCTOR, CONNECT, DESTROY) are invoked.  

Rationale: Allows both easy interactive scripting and coding; allows execution of blocks of serialized 

requests without explicitly submitting connection requests; allows transfer of already connected data 

sources between components in drag & drop and similar operations, because what gets transferred is 

simply a data source URI with descriptor contained in metadata directory [1], and the drop target can 

immediately and seamlessly execute requests on it; allows execution of requests on virtual data 

sources that are composed of atomic data sources that have not been previously connected. 

2. Channel is composed of dynamic value (value field), a set of characteristics, and associated 

accessor / mutator operations of all synchronicities; Reactor is always asynchronous. 

Dynamic value has one of the types described in Datatypes subsection; each datatype defines a set of 

obligatory characteristics (such as minimum and maximum for floating datatype); in addition each 

instance of a channel can have supplementary characteristics. Accessor and mutator operations support 

both synchronous / asynchronous gets and sets, as well as monitors and (possibly) local history access. 

All requests and responses between channel model and reactor (and downwards) are asynchronous. 

Rationale: If channel model does blocking on reactor asynchronous calls, then user has guaranteed 

order of execution if s/he executes synchronous methods on channel from within the same thread and 

such ordering is required; having all reactor calls be asynchronous evades the common pitfalls of 

blocking on failed connections and allows highly efficient operations at bursts of activity 

(initialization, shutdown). 

3. Reactor supports a small set of requests as a design contract. A request can be issued towards 

any target that has a well-formed name. 

Such requests may include GET, SET, MONITOR, CONNECT, LOOKUP, for instance. If the target is 

atomic [12] (such as a the channel value) GET, SET and MONITOR have natural interpretations. If the 

target is a hierarchical component (such as “LINAC” or “LINAC:PS1”), the requests are processed on 

each element recursively and a compound data type result is generated (see next subsection). CONNECT 

request has already been mentioned in 1. LOOKUP request resolves the directory structure of the given 

name, returning the constituents of the name and the corresponding metadata descriptors.  

Rationale: Makes the form of requests simple and extensible, while allowing the plug a lot of freedom 

in how to actually implement these requests. We will see that this feature (specifically the recursive 

resolution when request is targeted to a packed entity), together with the directory and compound data 

types, allows systems that support optimized transfer modes natively to use them to the full extent.  

Datatypes 

1. There is a small number of basic types, two compound types, and a fixed and predefined set of 

infrastructure types. 

Basic types (such as a floating point type, integral type, bit pattern, string, enum) that differ not only in 

the storage size but also in the set of associated characteristics are separately defined. Infrastructure 

types (timestamps, error stack, alarm and completion codes) have a fixed form that can accommodate 

requirements of all the underlying systems. Compound types are arrays and maps of name-value pairs, 

which can recursively nest. This accommodates structures (that correspond to maps) as well as trees 

(that are one possible result of issuing a request towards a non-atomic target, such as all entries in 

directory node “MACHINE1:LINAC”). 

10th ICALEPCS 2005; G. Tkacik, M. Plesko, M. Clausen et al. : Transplanting the success of Eclipse to cont... 4 of 6



Rationale: Support for both manual programming using channel interface, generic applications (e.g. 

fetching all characteristics of X) and efficient coding of packed data transfers [12]. 

2. Java 1.5 generics can be used to support casting a type to alternative renderings and to use 

pre-allocated objects; no multiplication of code for different datatypes. 

This is an important feature, because it allows inference of the return type from the passed argument 

and the reuse of existing compound structures (maps) in an efficient way. Also allows the user to 

define structures and tuples as Java classes and have their member fields filled by the DAL 

introspectively when they are supplied as a parameter. 

Rationale: It is possible to design a value accessor method on the channel with signature T 

get(Class<T> type) or void get(T instance) that infers T or declares the accessor template method and 

reuses it without cumbersome type casts. For example, sometimes it is possible to fetch compound 

data (e.g. by doing GET on a list of channels) into either a map (where keys are IDs of the channels) or 

array (where ordering is implied), and both ‘views’ of the same data can be distinguished by T. 

Universal naming and the directory 

1. If metadata directory is present, alternative hierarchies and named virtual data sources 

(groups, aliases) can be defined; these can be targets for reactor requests. 

Virtual data sources can be hierarchical names that contain all their child nodes. More commonly the 

virtual data source is defined when, say, the user makes a selection of certain channels in the 

navigator; or when the application at start-up predefines a set of all BPMs in the storage ring as a new 

virtual data source. Virtual data source can also be an alias (alternative name) or a group of nodes that 

match some search criteria. 

Rationale: Allows treating systems where integration of data is supported natively and systems where 

it is not, on the same footing (i.e. in one case the data source is virtual and in the other it is real, but 

DAL machinery remains the same); the requests can be optimized in the plug for systems without 

native packed support (for example because it is known in advance that the plug has to execute N read 

requests, one for each BPM in the virtual data source, it can create and flush them in one attempt). 

2. Support for a canonical and native names with arbitrary number of hierarchical levels. 

Each native name [13] is a valid target for a reactor request. All such names also have a canonical URI 

rendering that is used to store the data source description in the metadata directory or when serializing 

requests. In addition, URI names also describe other entities that do not exist natively: non-atomic 

targets (“LINAC”) on which requests can be recursively applied; virtual data sources (such as groups 

of channels) that are defined in the directory; subparts from which a channel is constructed 

(“LINAC:PS1_CUR:MINIMUM”) and so on.  

Rationale: Arbitrary number of levels allows us to cover various systems; canonical rendering makes 

each target uniquely identifiable in a consistent way that can be parsed by standard Java URI tools; the 

reactor interface makes no distinction between something that is an atomic data source or a virtual 

one. 

Extensions 

1. Reactor defines extension points for plug implementations. 

Each plug implements reactor interfaces that perform the actual request processing and 

communication with the underlying layer. 

2. Reactor defines extension points for the interceptors. 

Before the received request is submitted to the remote layer, any registered interceptors can examine 

or modify it (Chain-of-Command). This allows requests to be logged, serialized, authenticated, 

benchmarked and even modified. The interceptor notification procedure is executed when a response 

is received as well. 

3. Metadata directory is an extension that plugs in as an interceptor of the reactor. 

If metadata directory is present and as long as the plug keeps the connection to the remote source 

alive, the URI of the remote source is maintained in the directory along with its descriptor object (see 

[1]). Whenever the user right-clicks on the data sink that represents the data source (for instance the 

gauge displayer component), or examines it in the navigator tree, or drags it to another sink etc, the 

directory can be used to look up the structure of the manipulated object. Generic applications can use 

descriptors to dynamically invoke requests on the object. 
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4. Additional request sets are extensions for extension points defined by DAL. 

To support functionality that is too specific to be made portable and uniform across different 

underlying control systems, an extension plug-in can supply a set of request definitions (tags) and their 

implementations for a specific plug. The application programmer can then use the reactor RQ/RP 

interface to issue such special requests, which will get routed to the extension for processing, without 

requiring modifications to the reactor DAL architecture. 

CONCLUSION 

We believe that Eclipse plug-in system provides the necessary incentive to cleanly split the code that 

is responsible for communication with the control system into a low-level reactor scheme with its 

glue-code plugs, the channel model, and the metadata directory. The reactor can run as a stand-alone 

component; and both reactor and channel model can be used without metadata directory. Using DAL 

with channel model is similar to current JCA; using all three blocks together opens up the possibility 

of having compound datatypes returned by a single ‘channel’; but with the directory, the ‘channel’ can 

now be a real channel or a set of real channels, either of the same type or various types – and no 

interfaces exposed to application programmers change when such virtual data sources and compound 

types are introduced. The organization of the data (e.g. whether the naming hierarchy reflects the 

geographical location or arrangement by device type or functional group and so on) can be formalized 

in a directory, which can accommodate multiple hierarchies, and consequently – as an example – 

reading either all properties of “LINAC:PS1” or all CURRENT properties of the form 

“LINAC:PS*:CURRENT” both turn out to be one-request operations on a specific virtual data source.  

By structuring DAL in the way described here we hope to create a consistent and application-oriented 

foundation that is both small and flexible enough so that the specific features of each separate system 

do not need to be discarded for the sake of generality. 
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