
THE CS FRAMEWORK – A LABVIEW BASED APPROACH TO 
SCADA SYSTEMS 

D. Beck1, H. Brand1, S. Götte1, F. Herfurth1, C. Rauth1, R. Savreux2, S. Schwarz3, and C. Yazidjian1  
1GSI, Planckstaße 1, 64291 Darmstadt, Germany 

 2CERN, Physics Department, 1211 Genève 23, Switzerland 
3NSCL, Michigan State University, East Lansing, MI 48824-1321, USA 

ABSTRACT 
Since a few years, the CS (Control System) framework is in use at a couple of experiments at 

various laboratories. The main idea behind CS is to provide a common basis which can be used to 

develop dedicated control systems by adding experiment specific add-ons. The key features of CS are 

an object oriented approach, event driven communication, the lack of intrinsic bottle necks like a 

central event manager, its ability to be distributed over many nodes, and the usage of LabVIEW which 

guarantees a fast learning curve as well as an excellent connectivity to hardware. The aim of this paper 

is to present the status of CS as well as to highlight recent achievements. 

INTRODUCTION 
In the past years, the CS framework has been developed at GSI [1]. The typical applications of CS 

have a couple of thousands process variables and require a large flexibility. However, the main 

emphasis of CS is not on the control of a huge number of process variables but to support a large 

variety of different hardware device types. SCADA (Supervisory Control And Data Acquisition) 

features like alarming and trending as well as interfaces to field-busses like CAN and Profibus as well 

as OPC-servers are required. Easy maintenance paired with a fast learning curve is a major issue, since 

the main work is typically done by PhD students or Post-docs.  

As a consequence, it was decided to develop the framework based on LabVIEW from National 

Instruments. Although LabVIEW is typically employed to table top experiments and test systems, it 

provides multi-threading, event-driven communication, a large amount of hardware interfaces, and 

many drivers for commercial devices. An object oriented approach was developed within the CS 

framework as well as the possibility to distribute control systems to a large number of nodes by 

implementing an event driven communication mechanism across the network. Today, the CS 

framework is in use at about ten experiments at MSU, CERN and GSI. Although the original 

development has been done on the MS-Windows platform, it has been ported to Linux as well as to 

LabVIEW RT, a real-time implementation based on the PharLap real-time OS (Operating System). 

SCADA functionality is introduced by the DSC (Datalogging and Supervisory Control) module of 

LabVIEW. An interface to DIM [2], a communication system for mixed environments, has been 

implemented as well [3]. 

BASIC PROPERTIES OF CS 

Implementation with LabVIEW 

LabVIEW [4] is a graphical programming language. Its main advantages are its fast learning curve 

as well as its excellent connectivity to a lot of different types of industrial hardware. Multi-threading is 

an inherent feature of LabVIEW. Moreover, LabVIEW provides tools for synchronizing threads and 

for sending messages from one thread to another thread. SCADA features like alarming and trending 

are provided by the DSC (Datalogging and Supervisory Control) module of LabVIEW. In addition, the 

DSC module can serve as an OPC (OLE for Process Control) client and server. At GSI, the usage of 

LabVIEW is an explicit requirement by quite a few experiments. 

Object Oriented Approach 

In order to benefit from the advantages of object oriented techniques, those should be used together 

with LabVIEW. Unfortunately, this language has no built-in support for those techniques. Two third-

party toolkits exist on the market that can be used, GOOP [5] and ObjectVIEW [6]. However, these 

toolkits are no open source software. Then, hunting for possible bugs may become a nightmare since 

one can not identify, if a bug is due to the toolkit or due to LabVIEW.  However, the first version of CS 

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO1.051-6  (2005)



was based on ObjectVIEW, but it turned out that this toolkit did not meet the performance 

requirements. As a consequence, a new object oriented approach was implemented within the CS 

framework [1]. This approach allows creating and destroying objects on the fly; tools for inheritance 

and a class browser have been implemented as well. As one of the primary requirements, CS is 

implemented on pure LabVIEW, and does not depend on external libraries linked to a specific OS. 

Implementation details are described in the appendix of [1]. 

Base classes form the core of CS and provide features like class specific attribute data, methods of 

accessing the attribute data and locking them to maintain their integrity. Inherited from the base 

classes are other classes that represent a specific hardware device type like, as an example, a function 

generator. Each physical function generator is then represented by an instance of that class.  

Event Driven Communication 

The main idea of the CS framework is to couple the object oriented approach with an event driven 

communication mechanism. In most cases, objects do not communicate by calling directly (hard-

wired) the methods of other objects. Instead, they send events to the other objects. Events are typically 

buffered and contain information like the object name of the receiver, the name of the method to be 

called, a timeout value and data. The usage of events has two main advantages. First, one does not 

have to decide on the class type or the method to be called during the implementation. Since each 

object can in principle send an event to all other objects, the flexibility obtained is outstanding. One 

can even reconfigure a control system on the fly. Second, events can be transmitted across the 

network. As a result, it does not matter on which node the objects are created or where the hardware 

device is connected physically. 

Events are directly transmitted from one object to any other object. One the one hand, this implies 

some overhead for each object, since the validity of the event has to be checked by the object 

receiving the event. On the other hand, no intrinsic bottle neck exists, since a central event manager is 

not required. Within CS, events are based on the LabVIEW "message queues", which are buffered, and 

on the "notifications", which are not buffered. A timeout value can be set for each event. If the 

specified time has passed, the event will no longer be processed by the object receiving the event. This 

helps to avoid piling up of events and blocking a control system when a node is overloaded. 

Configuration Data Base 

If, as an example, an object represents a function generator that is connected via GPIB, the object 

needs information about the GPIB interface card representing the master of the GPIB bus as well as 

the GPIB address of the function generator on the bus. Such information is made available to the 

object via a configuration data base which is queried while an object is instantiated. Typically, a 

configuration data base is implemented using a commercial data base like MS-Access or Oracle and is 

queried via SQL (Structured Query Language). 

Within the first CS versions, the configuration data base was configured as an ODBC (Open 

DataBase Connectivity) data source on each node of a control system. This approach has two 

disadvantages. First, an additional configuration of the ODBC data source was required for each node. 

Second, the LabVIEW SQL toolkit was required on each node. 

The recommended alternative is depicted in Figure 1. A dedicated SQL Server accesses the 

configuration data base directly via SQL and ODBC. When an object is instantiated on any node of the 

control system, the configuration data are accessed via a SQL Client. The client then connects to the 

SQL Server and obtains the configuration data via TCP/IP. By this, the ODBC data source has to be 

configured only on one central node and the LabVIEW SQL toolkit is required only once per control 

system. 

SCADA Backend 

Per default, SCADA functionality like alarming and trending is provided by the DSC module of 

LabVIEW. This module is based on a Citadel real-time data base. Each object writes data to items, so 

called tags, of the DSC module. The tags and their properties like alarm limits have to be configured 

prior to starting the application. Tags can not be created on-the-fly. The configuration can be done via 

the so called Tag Configuration Editor that is part of the DSC module or via MS-Excel sheets, which 

10th ICALEPCS 2005; D. Beck, H. Brand, S. Goette, F. Herfurth, C. Rauth, R. Savreux, S. Schwarz, C. Yaz... 2 of 6



can be imported. As a recommendation, the number of tags per DSC module should not exceed 

10,000. Of course, one can use more than one DSC module per control system. 

Per convention, typical CS classes do not write directly to tags of the DSC module. Instead, the 

SCADA functionality is encapsulated by a dedicated DSCIntProc class. Objects write and read tag 

values via an object of that class. For each object of the CS framework the name of the DSCIntProc 

object and its node are defined in the configuration data base. This encapsulation has two 

consequences. On the one hand, an intrinsic bottle neck is introduced when passing data between the 

CS system and the SCADA backend, if only one DSCIntProc object is used. On the other hand, this 

encapsulation allows replacing the DSC module of LabVIEW by another SCADA backend (see 

section DIM Integration). 

PC 1

ODBC Data 
Source

CS Process

MS-Access File

PC n
CS Process

SQL Server

TCP/IP

SQL

TCP/IP

 

Figure 1: Recommended communication path for connection to the configuration data base. 

Here, all CS processes connect to a SQL Server via TCP/IP, which queries the data base via SQL.

OPERATING SYSTEMS 
Since CS itself is based on pure LabVIEW, it can in principle run on all OSs that are supported by 

LabVIEW like MS-Windows, Mac OS X, Linux, SOLARIS as well as the real-time OS PharLap. In 

the following the OSs on which CS is actually used are discussed. Moreover, control systems based on 

CS can consist of nodes with different OSs and each node can use the OS which fits the task of the 

node best. 

MS-Windows 

Although LabVIEW originates from Mac OS, MS-Windows is the OS which is most commonly 

used with LabVIEW. As a consequence, this platform provides the best support by National 

Instruments and new features are implemented on this platform first. Moreover, most hardware 

manufacturers developing hardware for PC-based industrial automation have concentrated on MS-

Windows. Hence, the support for hardware drivers for this OS is unbeaten. Another example is 

industrial communication via OPC, which is based on the DCOM standard by Microsoft. Huge 

amounts of hardware come with OPC servers and thus require MS-Windows. As a consequence, MS-

Windows is the OS on which CS has been developed and which is used most frequently and tested 

best. 

10th ICALEPCS 2005; D. Beck, H. Brand, S. Goette, F. Herfurth, C. Rauth, R. Savreux, S. Schwarz, C. Yaz... 3 of 6



Linux 

Linux plays a major role in the research community. Its main benefits are the usability by more than 

one user per node and in many cases a better performance and stability compared to MS-Windows. 

For various reasons, some experiments require the usage of Linux for control systems as well. The 

core classes of CS can be used on Linux without changes. However, the support for commercial 

hardware drivers is missing in many cases. As an example, the new DAQmx driver from National 

Instruments is not available for Linux until now.  This imposes a significant limitation on the usability 

of many hardware device types. However, the possibility of a network installation as well as its good 

stability makes CS installations on Linux more and more common. 

Real-Time 

Some control and data acquisition tasks require high reliability and determinism. Typical examples 

are systems for protection of machines and personnel or control systems that need to synchronize with 

the timing structure of accelerators. This is the domain of real-time systems. LabVIEW RT, the real-

time variant of LabVIEW, is based on the real-time OS PharLap or RTX, a Windows Realtime 

Extension. It adheres to preemptive and round-robin scheduling, optimized for deterministic 

performance. Threads with higher priority always preempt execution of lower priority threads. When 

threads of equal priority need to execute, round-robin scheduling gives each thread an equal amount of 

time with the processor. Depending on the hardware, deterministic performance with minimal jitter in 

the order of microseconds can be achieved for one dedicated time critical thread with highest priority. 

Other threads with lower priority process non-time critical tasks like publishing data or receiving 

commands via TCP/IP. The CS framework is successfully used with LabVIEW RT [7]. 

DIM INTEGRATION 
DIM (Distributed Information Management) [2] is a communication interface for distributed 

systems and has been developed at CERN. DIM is based on a client-server architecture. A server 

publishes so-called services, which can be of an elementary data type, an array of arbitrary size or a 

user defined data type. A DIM server can receive and process commands. Of course, DIM is fully 

event driven. DIM is implemented for the operating systems Windows, Linux, VMS, Unix as well as 

the real-time platforms OS9, LynxOs and VxWorks. Supported languages are C, C++, Java und 

Fortran. Its high performance as well as its capability to interconnect a wide range of different 

platforms makes it an ideal tool to connect LabVIEW to non-LabVIEW applications. A LabVIEW 

interface has been developed in a different work [3]. 

The integration of DIM into CS is done via a dedicated DIMIntProc class. This class implements a 

DIM server. The usage of this class by other classes is identical to the DSCIntProc class described in 

section SCADA Backend. As an additional functionality, the DIMIntProc class may receive commands 

via DIM and send the command together with the received data to any object as an event. By replacing 

a DSCIntProc object by a DIMIntProc object, two scenarios are opened up. First, instead of using a 

real SCADA backend, one can just publish the values of tags to DIM and make them available to all 

DIM clients on the same network. In that case, DIM also serves as a kind of real-time database for the 

CS based control system. Second, the DIM can now serve as a communication interface to SCADA 

back ends different from the DSC module. As an example, one can use the SCADA system PVSSII by 

ETM. A DIM interface for PVSSII has been implemented within the JCOP framework [8].  

DEPLOYMENT AND OPERATION 
During real operation, CS systems should not be used in the LabVIEW development environment. 

Instead, executables should be built using the LabVIEW Application Builder. First, executables are 

significantly faster und consume less memory. Second, executables can only be replaced but not 

changed. If a new version of the software has a problem, changing back to old binaries can be done 

within a few seconds. To make sure all nodes use the same software version and to ease the 

deployment of new software, binaries are preferably installed on a network drive. 

For operation, two additional requirements must be taken into account. First, all required processes 

on each PC must be started automatically after a PC is booted. Examples are the binary for the CS 

process or OPC servers. The required processes may differ from PC to PC. Second, there is always a 

10th ICALEPCS 2005; D. Beck, H. Brand, S. Goette, F. Herfurth, C. Rauth, R. Savreux, S. Schwarz, C. Yaz... 4 of 6



possibility that a process crashes unexpectedly. In such a case, the process must be restarted 

immediately without user interaction.  

To take these requirements into account, an additional process, DomainConsole, may be started on 

each node. When started, DomainConsole reads an ini-file which has for each node sections 

containing a list of processes. DomainConsole starts all processes that are listed in that section. By this 

mechanism, DomainConsole is able to start all processes specific for each node. Each process listed in 

the ini-file has an additional parameter, which determines how this process is started by 

DomainConsole: A process can be disabled, it can be started once, or it can be started whenever it is 

not executing. In the latter case, DomainConsole periodically checks, if that process is contained in the 

list of processes maintained by the operating system. If a process is not listed, it has either not been 

started or it has crashed. Then, the process is restarted by DomainConsole. 

PERFORMANCE 
Today, the largest control system implemented with CS is the one for the PHELIX (Petewatt High 

Energy Laser for Ion eXperiments) facility at GSI, which will have about 10,000 process variables in 

its final configuration [9]. About 100-200 active objects or hardware devices can be used per PC. The 

rate achieved for synchronous events* is about 1-2 kHz. As the hardware platform, a PC with PIII 

processor, 700MHz, and 1Gbyte of RAM is the recommended minimum. However, a stripped version 

of CS also runs on FieldPoint PACs from National Instruments with 16Mbyte of RAM. Under typical 

conditions, CS runs stable for at least a couple of hundred hours. In most cases, a shutdown of a 

distributed CS system is not due to instabilities of CS rather than typical maintenance like the 

deployment of a new version. 

MAINTENANCE AND DISTRIBUTION 
The core of the CS framework and all classes of general interest are maintained by the KS 

(KontrollSysteme) group of the EE (Experiment-Elektronik) department at GSI. Application specific 

classes like a dedicated GUI of an experiment are maintained by the experimentalists. The software is 

available under the terms of the GPL (GNU General Public License). Up to date information and 

downloads are available via a dedicated web-site [10]. 

APPLICATIONS 
The development of CS was mainly triggered by facilities using ion traps to investigate unstable 

nuclei. CS is successfully used since about two years at the following places: SHIPTRAP is a facility 

at GSI dedicated for investigating super-heavy transuranium elements which are created by fusion-

evaporation reactions [11]. ISOLTRAP at ISOLDE/CERN determines masses of unstable nuclei for 

nuclear physics and fundamental tests [1]. REXTRAP at ISOLDE/CERN serves for cooling and 

bunching of ISOLDE beams [12]. LEBIT at MSU performs mass measurements of rare isotopes [13]. 

An atomic physics experiment at GSI conducts measurements of atomic life times in the pico-second 

range [14]. PHELIX is a Petawatt laser being set up at GSI [9].  

Two new CS based control systems are being developed for two experiment at GSI, FOPI [15] and 

RISING. [16]. A couple of upcoming facilities at GSI, like MATS [17] and HITRAP [18], have already 

nominated CS as a promising candidate for new control systems. 

CONCLUSION AND OUTLOOK 
The CS framework is used in production runs at various experiments. In general, the key 

requirements of the experimentalists are fulfilled. Results that were obtained using CS as control and 

data acquisition systems have been published. New CS installations are being set up at GSI and CS is 

also envisaged as a candidate for control systems at FAIR (Facility for Antiproton and Ion Research) 

in Darmstadt. 

CS can cooperate with other control system software by using DIM or OPC as protocols. The usage 

is no longer restricted to the MS-Windows platform. Today, CS can also be used with Linux or, by 

using LabVIEW RT, for applications requiring hard real-time. Two tools, SQLServer and 

                                                      
*
 For a "synchronous event", the sender waits for an answer from the receiver prior to sending the next event. 

10th ICALEPCS 2005; D. Beck, H. Brand, S. Goette, F. Herfurth, C. Rauth, R. Savreux, S. Schwarz, C. Yaz... 5 of 6



DomainConsole, have been developed which assist in setting up a CS based control system that is 

distributed on many nodes. 

So far, the emphasis of CS was to give access to a large number of different hardware types and to 

provide high flexibility for the experimentalists. The number of process variables itself was a minor 

issue. So far, up to 10,000 process variables are used in distributed installations with at most ten PCs. 

In the future, the scaling of CS to a larger number of process variables will be investigated and the 

application layer is becoming more important. As an example, future developments will deal with 

security/locking mechanisms as well as an object broker and object nets. 

 

 

REFERENCES 
[1] D. Beck et al., "A new control system for ISOLTRAP", Nucl. Instrum. Methods A 527 (2004) 567-

579.  

[2 ] C. Gaspar and M. Dönszelmann, "DIM - A Distributed Information Management System for the 

Delphi experiment at CERN", Proc. IEEE Eight Conference REAL TIME '93 on Computer 

Applications in Nuclear, Particle and Plasma Physics, Vancouver, Kanada.  

[3] D. Beck et al., Proc. "Virtuelle Instrumente in der Praxis 2005", "Die LabVIEW-DIM Schnittstelle: 

Das Tor zur standardisierten Kommunikation zwischen LabVIEW und einer Vielfalt von 

Programmiersprachen und Betriebssystemen", VIP 2005, Fürstenfeldbruck, Germany, Editors R. 

Jamal and H. Jaschinski, ISBN 3-7785-2947-1, 20-26. 

[4] R. Jamal and H.Pichlik, “LabVIEW Applications and Solutions” (1999) Prentice Hall. See also: 

http://www.ni.com/.  

[5] David Hoadley, "What is GOOP?", LabVIEW Technical Resource, Vol.11, 4 (2003). 

[6] R. Buhrke, "G++ with ObjectVIEW - A new concept of advanced object-oriented LabVIEW 

programming", LabVIEW Technical Resource, Vol. 9, 3 (2002). 

[7] D. Beck et al., "The First Approach to Object Oriented Programming for LabVIEW Real-Time 

Targets", IEEE Trans. of Nucl. Science, submitted.  

[8] For detailed information on the usage of PVSSII in large physics experiments see 

http://itcobe.web.cern.ch/itcobe/Projects/Framework/.  

[9] S. Borneis et al., "Status of PHELIX",  GSI Scientific Report 2004 (2005), 222-223. 

[10] http://www-w2k.gsi.de/controls/CS/cs.htm. 

[11] G. Sikler et al., "First on-line test of SHIPTRAP", Nucl. Instrum. Methods, B 204 (2003) 482-

486. 

[12] D. Habs et al., "The REX-ISOLDE project", Hyperfine Interactions 129 (2000) 43–66.  

[13] S. Schwarz et al., "The low-energy-beam and ion-trap facility at NSCL/MSU", Nucl. Instr. 

Meth.B204 (2003) 507-511. 

[14] S. Toleikis et al., " Lifetime of the 2 3P0 state of He-like 197Au", Phys. Rev. A 69, (2004) 022507-

022511.  

[15] W. Reisdorf et al., "Central Collisions of Au on Au at 150, 250 and 400 A MeV", Nucl.Phys. 

A612 (1997) 493-556. 

[16] F. Becker et al., "Status of the RISING project at GSI", Eur. Phys. J. A (2005) 719–722.  

[17] K. Blaum et al., "Technical Proposal for the Design, Construction, Commissioning and Operation 

of MATS",  Mainz, 2005. 

[18] W. Quint et al., "HITRAP: A Facility for Experiments with Trapped Highly Charged Ions", 

Hyperfine Interactions 132 (2001) 453-457. 

10th ICALEPCS 2005; D. Beck, H. Brand, S. Goette, F. Herfurth, C. Rauth, R. Savreux, S. Schwarz, C. Yaz... 6 of 6


	THE CS FRAMEWORK – A LABVIEW BASED APPROACH TO SCADA SYSTEMS
	ABSTRACT
	INTRODUCTION
	BASIC PROPERTIES OF CS
	Implementation with LabVIEW
	Object Oriented Approach
	Event Driven Communication
	Configuration Data Base
	SCADA Backend

	OPERATING SYSTEMS
	MS-Windows
	Linux
	Real-Time

	DIM INTEGRATION
	DEPLOYMENT AND OPERATION
	PERFORMANCE
	MAINTENANCE AND DISTRIBUTION
	APPLICATIONS
	CONCLUSION AND OUTLOOK


