10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO1.037-6 (2005)

ABSTRACT DEVICE PATTERN
AND TANGO

A.GoOtz1, P.Verdiet, J.Coquet, A.Butead, C.Scafund
IESRF, Grenoble, FrancéSoleil, Paris, France, Lausannéklettra, Trieste, Italy

ABSTRACT

Abstraction gives you the power to take care of the bitupmicand worry about the details later.
One of the main goals of a control system is interfacondhdrdware and software. This paper
discusses how the Abstract Pattern can be applied tc&etd implement standard interfaces for
families of devices, deal with abstraction and geneiallgrove the interoperability of client and
server components within and between control systems. &per presents concrete examples of the
Abstract Device Pattern applied to the TANGO control system

INTRODUCTION

New control systems like old ones need to interface hasmlaad software subsystems. Object
oriented control systems like TANGO offers an excell@mportunity to implement abstraction via
standard device classes. The standard device classesnianmpleoftware interfaces for families of
devices e.g. motors, power supplies, function generatursThe standard interfaces introduce
abstraction by decoupling client applications from detngglementations. This means more generic
code, which in turn means more code sharing. This pajédaies how the Abstract Device Pattern
has been implemented in TANGO to build families of degiervers.

ABSTRACT DEVICE PATTERN

The Abstract Device pattern is derived from the Abstractdry pattern. Let us remind ourselves
what the Abstract pattern is:

"Provide an interface for creating families of related opdedent objects without specifying
their concrete classes.”" (Gamma, E., R. Helm, R. Johasah). Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. ReadiAgAbldison-Wesley, 1995)

The main idea of the abstract pattern is to provide a aminterface to a wide range of concrete
implementations. The abstract factory will return antralos interface to a concrete implementation
of the desired object.

The Abstract Device pattern is the specific case of therédispattern applied to devices. It can be
summarised as follows:

"Provide an interface for creating families of devices Whigpresent related devices without
specifying their concrete implementation e.g. Motor, R8wpply, FunctionGenerator etc.”

The main motivation of the Abstract Device pattern is:

1.That same client applications can communicate withiphe concrete implementations of related
devices



10th ICALEPCS 2005; A.Gotz, P.Verdier, J.Coquet, A.Buteau, C.Scafuri et al. : Abstract Device Pattern ... 20f5

2.To define standard interfaces to a families of devices

3.To avoid duplication of similar but incompatible inteda for related devices e.g. two power
supplies from different suppliers,

4.Guide new programmer's on what the essential methedsstade implemented for a family of
devices

MyAbstractDevice
MyAbstractDeviceClass Emyesites iy
+my_command|) : void
+command_factory() : void + write_my._attribute{my_value - int) : void
+ attribute_factory() : void +read my attribute() :int
P}
MyConcreteDevice
MyConcreteDeviceClass + my_command() : void
+ deﬂce_list: int . et | +write_my_attribute{my_value : int) 1 vold
+ device_factory() : void + read_my_attributel() @ int

HOW TO ABSTRACT A DEVICE?

How to go about defining the abstract device class? Thithasfirst step in defining what
constitutes the abstract device for the family of deweieh your concrete device belongs to. Often
this is also the step where many attempts in the pasfaéiered and failed to deliver. The main idea
of the Abstract Device pattern is to define the most commterface for all devices which are
members of this family of devices. The Abstract Devicégpatis in many ways similar to the Union
design pattern. The superclass represents an abstrasemation of the union of all the subclasses.
Due to this polymorphism, the subclasses can thus be usedrettire superclass is required.

When defining the Abstract Device class the following pples can help:

include only the main features which best represent émhars of the superclass
do not get bogged down in detail, if you find the discusisioaking too long stop it
if in doubt, throw it out

the important thing is to arrive at a result

a bad abstract device class will eventually be reglagea better one

arwNPE

THE CODE

How to go about implementing an abstract device class?érhainder of this paper explains how
this has been done for TANGO. The technique described heretbégsated in TANGO version 5.

First make sure you have identified which abstract classdexice belongs to. Refer to the above
section for tips on how to define the abstract class.

THE ABSTRACT DEVICE CLASS

The abstract class will be the super class for all cemdreplementations of that device type.



10th ICALEPCS 2005; A.Gotz, P.Verdier, J.Coquet, A.Buteau, C.Scafuri et al. : Abstract Device Pattern ... 30of5

Initially the abstract class will not implement any devipedific code — the equivalent of an interface
in Java. The reason behind this is to concentrate on gfine abstract class interfaces and not get
bogged down in details of what should go in the code. Code sheulttlegated to the subclasses.
Future versions of the abstract class could include codeahgidered necessary. The abstract class
serves as the super class for the implementation tlassild however at any time be considered as a
standard TANGO device server. The abstract class is gedenaing Pogo — the graphical code
generator for TANGO. Generating your abstract class Ritgo you end up with a set of C++ files :

MyAbstractDevice.h, MyAbstractDevice.cpp, MyAbstractDeviceClass.h,
MyAbstractDeviceClass.cpp, MyAbstractDeviceStateMachine.cpp

Where MyAbstractDevice will be replaced by the nameamir abstract class e.g. PowerSupply.
The concrete class which will be derived from this cladidink with the include files only. The next
step is to implement the commands and attributes in theeteraass. This is also done with Pogo.

THE CONCRETE DEVICE CLASS

The concrete device class implements a real case of theedeviactually talks to real hardware if
this is a hardware device server. The concrete device inlassts from of the abstract device class
i.e. respectively the MyAbstractDevice and the MyAbsDaetceClass classes. It is generated using
pogo .

POGO

Pogo is the code generator tool developed for generating aimdaiing device server classes. It
has a repository of all abstract classes which ischked when new classes are created. New classes
can be generated as abstract or concrete classesshesereen shot of a CCD camera concrete class
for an IEEE 1394 (Firewire) ccd which is derived from tHeDCabstract class :

[l
File Edit Help
Author: - Revision:

% Ccd1394

=P Class Properties
m=- Device Properties
» == Commands
@ State
@ Status
¢ stant
@ Stop
@ Reset
< WriteFile
» == Attributes
@ Exposure
& Roi
@ Binning
@ Trigger
< width
< Height
@ Frames
@ Depth
@ FileParams
@ FileFormat
0 Image
¢ HEe- States
@ Tango:OMN
@ Tango:OFF
@ Tango:zFAULT

p /
m Language Generated: ® C++ (O Java

Heoo ==l [x]




10th ICALEPCS 2005; A.Gotz, P.Verdier, J.Coquet, A.Buteau, C.Scafuri et al. : Abstract Device Pattern ... 40f5

EXAMPLE — CCD

Example of an abstract TANGO interface for CCD's (champled devices) :

CedClass Ced

+ binning : long(]

+depth: long

+exposure double
+filefarmat : string
+filename : string
+fileparms : string]]

+ frames : long

+gain :double

+ height : int

+width : int

+ 1ol lang(]

+trigger :int

+imagedata : ushor]]

+ Startf) :vold

+ Stop() s void

+ Resef() - void

+ Statef) :void

+ Statusfalir : double) :void
+read binning(atir -long[]) : void
+ wilte: binningfatir - longf]) : void
+write ..{):void
+read_..) :vold

+command_factory() : void
+ attribute_factory() : woid

This abstract CCD class has been used to build a ceraests for a real ccd camera with an IEEE
1394 interface. The source code for the Ccd for the IEEE136%reaclass can be found on
SourceForge in the CVS repository of the tango-ds project:

http://cvs.sourceforge.net/viewcvs.py/tango-ds/Acquisition/@ed1394/

Apple iSight — example of a low cost ccd
camera interfaced with leee 1394



10th ICALEPCS 2005; A.Gotz, P.Verdier, J.Coquet, A.Buteau, C.Scafuri et al. : Abstract Device Pattern ... 50f5

ABSTRACT CLASSES

In TANGO the following abstract classes have been defocdr :
Motor, Powersupply, SignalGenerator, NeutronDetectocuven Gauge, Ccd, Adc
We are working on the definitions of the following classderialia :

lon Pumps, Pumping Stations, Beam Position Monitors, @osinVoltmeters, Ammeters, Insertion
Devices, Linac, Temperature Controllers, Slits, Atteorsat

ABSTRACT CONTROL SYSTEM

Abstraction is part of any good object oriented design. Imetging Abstract Device Patterns for
directly identifiable hardware families in a control systame only the first step. Once hardware
families are standardised it is possible to group thegether and identify even more abstract
families of devices which represent a group of lower lad&lice e.g. a linac, a radiofrequency
system. Eventually one arrives at a single interfacewtepresents the entire control system. It can
be used by high level clients to connect to the control syatehbrowse the concrete instances of the
control system.

IMPROVEMENTS

The main improvements which will be added in the futsreiextend Pogo so that it can manage
multiple hierarchies of abstract classes, implemerdhared code in abstract classes as superclasses,
and generate Java interfaces.

CONCLUSION

This paper has shown that abstraction is a very usefuldoabhtrol systems. The authors think it
is still under utilised in most control systems. Thispiartly due to the lack of support for
implementing abstract classes easily. The TANGO coaytstem is one of the few control systems to
offer the technology to implement concrete device sgaswhich respect abstract interfaces.
Hopefully this will incite more people to follow this nauand discuss how we can achieve a common
set of interfaces for concrete devices belonging to éimeesabstract family for TANGO and other
control systems.

ACKNOWLEDGEMENTS

The authors would like to acknowledge discussions with tABNGO community especially
E.Taurel, J-M.Chaize, J-L.Pons, J.Klora, N.Lecleang M.Ounsey.

REFERENCES

[1] TANGO home page http://www.esrf.fr/tango

[2] TANGO device server project on SourceFordgtp:/tango-ds.sourceforge.net

[3] Design Patterns: Elements of Reusable Object-Oriented/&aftby E.Gamma, R. Helm, R.
Johnson, and J. Vlissides. Reading, MA: Addison-Wedlg95




