
QNX BASED SOFTWARE FOR CONTROL SYSTEM OF FLNR
V. Aleynikov, A. Nikiforov

Joint Institute for Nuclear Research, Dubna, Russia

ABSTRACT

The control system of FLNR cyclotrons uses commercial SCADA FlexControl running under

RTOS QNX 4. Good interaction possibility allows integrating self-made programs and commercial

software. Basic ideas for inter-process communicating, data flow and overview of FLNR control

system are described.

INTRODUCTION

Since 1999 we have been using Supervisory Control and Data Acquisition (SCADA) software

named FlexCtrl 4 (BitCtrl Systems Ltd., Germany). It runs under UNIX-style commercial real-time

operating system QNX (QNX Software Systems Ltd., Canada). After 6 years of using this commercial

software there were written custom visualization server and a lot of device drivers, that successfully

replace and expand the regular software.

We have designed and integrated in SCADA device drivers for the following hardware:

‚ SMARTBOX data acquisition module (FLNR, Russia);

‚ Rotating encoder input device (FLNR, Russia);

‚ RADIS GM2524-100 RF generator (RADIS Ltd., Russia);

‚ EVPU PS24-500, PS15-30, PS25-120 power supplies (EVPU, Slovakia);

‚ DANFYSIK power supplies models 883, 853T, 855 (DANFYSIK A/S, Denmark);

‚ FESTO DGE positioning system (Festo AG, Germany);

‚ PFEIFFER TPG-256, 261 vacuum measurement and control units (Pfeiffer Vacuum GmbH,

Germany);

‚ KEITHLEY digital multimeter model 2000 (Keithley Instruments Inc., USA);
‚ AGILENT 33220A function/arbitrary waveform generator (Agilent Technologies,

USA);
‚ AMI Model 420 Power Supply Programmer (American Magnetics, Inc., USA).

It was designed and put into operation control systems for 6 charged particles accelerators and

radiating installations. Two more cyclotrons (DC-72 and DC-60) are at the final stage: assembled,

tested in FLNR and ready for shipping (see table 1).

Table 1.

Year Project Descriptions Country Process variables

2001 EA-10/10 Electron accelerator Germany 1800

2002 DRIBs Dubna Radioactive Ion Beams Russia 3500

2003 CyLab ECR ion source Slovakia 2800

2003 U-400 Isochronous Cyclotron Russia 4600

2004 U-400M Isochronous Cyclotron Russia 5200

2005 IC-100 Isochronous Cyclotron Russia 3700

…2007 DC-60 Isochronous Cyclotron Kazakhstan 5700

…2008 DC-72 Isochronous Cyclotron Slovakia 7600

OPERATING SYSTEM

In the late 90th we decided to renew Control System software based on MS DOS and Turbo Pascal.

We decided to launch a market survey on two components:

‚ Operating system;

‚ Development tools and run-time systems for the automation of technological process.

In order to find the best OS for our needs we formulated these requirements:

1. PC (x86) platform support because all control system nodes were x86 based.

2. Multi-tasking and suitable inter-process communication technique to run at the same time

PLC's protocol driver, HMI, RTDB server and printer manager.

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO1.036-6 (2005)

3. Good network integration to link remote nodes allocated over large area.

4. Openness and ease to write and integrate device driver for custom hardware.

5. Provide an embedded windowing system with full-featured GUI to afford convenient

Human-Machine Interface.

6. Have powerful development tools to create application software.

7. Real-time and fault tolerant.

8. Be commercial, well known and have good customer support.

9. Have choice of SCADA software.

After a general pre-selection, we stopped on three systems – Microsoft Windows NT, QNX and

Linux. Other known operation systems (UNIX, OS-9, pSOS, VxWorks) did not meet more then 2

points of our requirements; we did not take them for consideration.

Doing serious real-time coding in MS Windows is not simple work. Moreover writing device driver

for custom hardware requires a hugely talented individual (real expensive) who can work in the

bowels of the OS. We have plenty of hardware that comes without any communication driver. MS

Windows is designed as a server environment for hosting/workgroup/office applications. It is huge

compared to QNX and Linux and did not meet real-time, openness and reliability demands.

As a monolithic OS, Linux binds most drivers, file systems, and protocol stacks to the OS kernel.

Hence, a single programming error in any of these components can cause a fatal kernel fault. In QNX

these components can all run in separate, memory-protected address spaces, making it very difficult

for them to corrupt the kernel, or each other. QNX therefore provides an environment for real-time

applications that is more robust than Linux and much reliable than the unprotected real-time kernels.

Moreover in the late 90th Linux (FreeBSD as well) was in developing phase and did not have final

commercial version. Its graphical system was poor and there was no well known SCADA software for

Linux (OS-9, pSOS, VxWorks as well).

Finally we have chosen commercial real-time operating system QNX. QNX Software Systems

Limited (QSSL) has over 20 years of real-time OS experience on x86 platforms. That time QNX

outsells every other real-time OS for PCs and supported in almost 100 countries worldwide. It is

modular and designed specifically to allow the competent engineer to control precisely the priorities of

the process running on the hardware. It is UNIX-style scalable, multi-user, multi-tasking, real-time,

network and POSIX-compliant operating system.

QNX 4 supports Photon microGUI as graphical user interface. It has Windows look and feel. The

tool kit also offers a GUI development tool called the Photon Application Builder (PhAB), which

allows an application programmer to create prototype GUIs, without writing a single line of code;

build an entire GUI, by pointing and clicking; create applications with a consistent look and feel. The

QNX package includes the Watcom で/で++ highly optimizing compiler and tool set. The OS is

designed to allow users to develop and extend it. The hooks are here and examples are ready to be

followed. QNX as an OS is designed for real-time control and open for custom software/hardware.

SCADA SOFTWARE

As soon as we decided to use QNX it was only a few SCADA for QNX available: Sitex, Realflex,

FlexCtrl, PCP Virgo, Fiord microSCADA. Upon market analysis and test drives we have selected

SCADA FlexCtrl [1].

FlexCtrl is a process control system for the automation of technological processes. It is modular and

extremely scalable. The interface to the system is open and the user has the possibility adding custom

device driver to the system.

All parts of the FlexCtrl application can be managed with the project engineering system, which

configures process model (process variables with all characteristics). The system includes Process

Model Editor, Graphics Editor, Network Configurator, User Administrator, Driver, Visualization and

Run-time Compilers. Project and Run-time Installation tools complete the project development with

generating files for the start of run-time components.

10th ICALEPCS 2005; V. Aleynikov, A. Nikiforov et al. : QNX Based Software for Control System of FLNR 2 of 5

RTOS QNX 4

SCADA

FlexCtrl

Application
Builder

Project
Engeneering

Watcom C
Device
Driver

Run-time

System

HMI

DevelopmentRun-time

Photon
microGUI

Fig. 1. Basic structure of the software development

After a week of training we were able to develop protocol driver for custom PLC and connect it to

the working SCADA project with automation algorithm, graphical visualization and control. Basic

structure of the software development is shown on Fig. 1.

APPLICATION SOFTWARE

Since FlexCtrl Graphics Editor and graphical library does not meet our requirements we have

decided to develop custom image library. For creating Human to Machine Interface (HMI) we use

Photon Application Builder instead of the FlexCtrl Graphics Editor. We use Photon Application

Builder as graphical editor, object configurator and application compiler. We have developed a library

of functions, which we build into application to control the screen and the keyboard, as well as any

input from Visualization Server. Visualization Server intends for managing message queues for every

HMI client in the network.

Developer starts GUI design by arranging active images (widgets) on the screen. Every widget

represents process variable in text or graphical form. Every active image has property that contains the

name of the coupled variable in RTDB. At final step Application Builder compiles GUI and custom

library into the HMI application.

At start up HMI connects to the RTDB and reads coupling information from widgets to link them to

the RTDB in its memory. Next step it requests Visualization Server to open message queue for it. This

queue is a FIFO buffer of events of data changes managed by Visualization Server. Widget picture can

be imported from a file of BMP or GIF format. For better look and understanding of control process

we have used 3D images created in Solid Edge tools.

HMI allows analyze process data in real-time trend, store and retrieve a set of variables to repeat

important system modes. Reports can be configured, printed and exported in text form.

IPC AND DATA FLOW

QNX depends on the exchange of discrete packets of information – messages – to handle virtually

all inter-process communication. Message passing lies at the heart of the operating system’s

microkernel architecture, giving the OS its modularity [2]. This paradigm applies to all levels of

programming, from device drivers to file system and LAN. From the standpoint of a user's process

there is no difference between a local call and a call from the network and hence all resources on all

network nodes are transparently available everywhere on the network.

10th ICALEPCS 2005; V. Aleynikov, A. Nikiforov et al. : QNX Based Software for Control System of FLNR 3 of 5

Fieldbus protocol
driver

Serial port
driver

RAW values (DAC, ADC, DIN, DOUT)

RTDB

Algorythms, Automatic
control, Calculation,

Data conversion

Calculation
server

Hardware specific
driver

OPERATIONAL values (V, A, Torr, etc.)

RTDB

Visualization
server

Message Queue
server

Event
message

queue

Process
Monitoring

HMI

Trends, Errors, Logs, etc.

Historical DB

History
server

Error messages,
Log messages,

Trends, etc.

Process
Control

SCADA FlexCtrl

Event
message

queue

Process
Monitoring

HMI

Process
Control

- INPUT Data

- Commercial software

- Process Variables

- Custom software

- OUTPUT Data

Fig. 2. Data flow

FlexCtrl strongly uses this message passing technique as for internal run-time communication as for

interfacing to device drivers. The components of FlexControl can be partitioned, installed and run on

several computers of standardized PC network [3]. Every job of some significance in FC is handled

through a single computational process (server). FlexControl comprises a long list of these tasks:

‚ Process administration and process supervision

‚ Real-time database (RTDB)

‚ Calculation server (Soft SPC tasks)

‚ Visualization server and HMI

‚ Alarm server

‚ Message server

‚ Protocol drivers

The tasks are able to communicate and synchronize with one another. The data from the transmitting

process are exported via message passing over the network and imported directly into the address area

of the receiver process. Deadlocks and blocks do not occur in any form in FlexCtrl. The configured

coupling parameters of process variables (PV) and drivers are retrieved by respective driver process

when started up. The data flow diagram for process control and monitoring is shown below, see Fig. 2.

10th ICALEPCS 2005; V. Aleynikov, A. Nikiforov et al. : QNX Based Software for Control System of FLNR 4 of 5

Monitoring

For process monitoring device driver cyclically reads device status and compares it with the old one

saved in its memory. In case of any changes the driver writes new values to the real-time database.

Control Server manages real-time database access and triggers off coupled server for every instance

the PV is changed in the real-time database. Calculation Server processes these events, converts ADC

codes (raw values) to real physical (operational) values and writes them to RTDB. Visualization

Server gets information about changes of operational values as well. It appends these events of data

change to the message queue (FIFO) driven by Message Queue Server. The Human to Machine

Interface (HMI) cyclically checks for the messages in queue, reads them out and represent by

graphical image or text on the screen.

Control

Operator controls the process via HMI. He presses buttons, enters new values, etc. HMI writes new

values directly to RTDB. The fact the operational value (Ampere, Volt, Torr, etc.) was changed causes

Calculation Server to convert it to DAC code and write it to RTDB (raw values part). Next step

Control Server sends message with the new DAC code to the coupled driver. Device driver receives

new data from Control Server and issues write command to the device.

CONCLUSION

The disadvantages of using FlexCtrl and QNX are:

‚ Lack of QNX 4 device drivers for the most recent hardware (video, network);

‚ In a few years QSSL and BitCtrl will not provide support for outdated software versions

(QNX 6 and FC 6 are available now);

‚ Poor support of office application software;

The benefits are:

‚ Stability since the core of the OS and SCADA system is well optimized and tested;

‚ Development tools decrease total project engineering time and allows concentrating

more on visualization and automation algorithms;

‚ Flexibility. Openness and good interaction possibility allows easily add new hardware;

At present time we do not have serious problems with the selected solution (QNX and FC) and we

will continue using it for the further projects.

REFERENCES

[1] V. Aleynikov, S. Paschenko, “Using commercial SCADA in control system for ECR CyLab.”

PCaPAC 2000. Hamburg.

[2] Rob Krten, “Getting started with QNX 4. A Guide for Realtime Programmers”. PARSE Software

Devices, 1998.

[3] FlexControl - System Architecture Manual. BitCtrl GmbH. October 1998.

[4] V. Aleinikov, A. Nikiforov, “Integtrating custom software and commercial SCADA”, NEC'2003.

10th ICALEPCS 2005; V. Aleynikov, A. Nikiforov et al. : QNX Based Software for Control System of FLNR 5 of 5

