10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO1.032-6 (2005)

TRANSMITTING HUGE AMOUNTSOF DATA: DESIGN,
IMPLEMENTATION AND PERFORMANCE OF THE BULK DATA
TRANSFER MECHANISM IN ALMA ACS

P. Di Marcantonid, R. Ciram, B. Jerarfy G. ChiozZi
'INAF- Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 1-34131 Trieste, Italy
?European Southern Observatory, Karl-Schwar zschildstr. 2, D-85748 Garching, Germary

ABSTRACT

We presentand discuss the design, implementation and performance of the bulk data transfer
mechanism developed in the framework of the ALMA (Atacamaédillimeter Array) Common
Software (ACS)2][6] . ALMA will be the largest millimetre wavelength astronomical interferomete
in the world consisting of 6412-meters antennas, and the need forsfering efficiently huge
amounts of data arises consequently. For example, a typical output data rate expected from the
correlator (the device responsible for the processing of raw digitized data from the antennas) will be
of the order of 64 MB per secorjt]]. Since all subsystems in ALMA rely on a communication
infrastructure (ACS), which is CORBBased, this poses some problems to meet the stringent QoS
(quality-of-service) requirements. It is well known in fact that DOC {{iiated Object Computing)
middleware, such as CORBA, increases the packet latency due to marshafhagétialling, to
usage of the IIOP protocol, etc. To cope with ALMA requirements and to overcome the CORBA
potential bottleneck, we developed a transfeechanism based on the ACE/TAO CORBA
Audio/Video (A/V) Streaming service. This architecture uses CORBA for handshaking, but allows an
efficient data transfer by creating eaftbound stream(s) of data (i.e. bypassing the CORBA
protocol), thus enabling ALK applications to keep leveraging the inherent portability and flexibility
benefits of the ACS middleware. Our infrastructusaich wasput on the top of the ACE/TAO AV
Streaming service implementation, allows creating one or moref-@aind flows in asimple way (a
flow is a continuous sequence of frames in a clearly identified direction); each flow can be configured
using different communication protocols (e.g. TCP, UDP) with a measured efficiency comparable to
that of a raw socket connection.

We degined and implemented alsdDastributer model, which mimics a multicast behaviour. One
or more receivers can subscribe to a common objecD(thte buter) which receives data from one
sender (e.g. the correlator), and dispatches them to all the subsedbaers using otdf-bound
connections.

INTRODUCTION

The whole software infrastructure for ALMA is based on ACS (ALMA Common Software) (for a
detailed description s¢2][6]), which is a set ofgplication frameworks built on top of CORBA. This
poses some problems to meet the stringent QoS requirements for data transfer. In order to overcome
this bottleneck, we have implemented a transfer mechanism based on the ACE/TAO CORBA
Audio/Video (A/V) Straming servicg3], the ACS Bulk Data Transfer. This mechanism uses an-out
of-bound connection for the data stream (adopting communication protocols like TCP), thus
bypassing the CORBA protocol and, at the same tisiag CORBAfor handshakingndleveraging
the benefits of ACS middleware.

This paper outlines the design and implementation issues of the ACS Bulk Data Transfer and
analyzes the achieved performances. $é#at by introducing some new terminology, and in the
subsegant sections the provided tool is described.

The OMG CORBA A/V Streaming Services specificatidh (on which the TAO A/V Streaming
Service is based) definessream as a set of flows of data between objects, wheflow is a
continuous sequence of frames in a clearly identified directiosir éam is terminated by atream
endpoint, and can have multipltow endpoints, acting as a source or as a sink of data Fsgere
1).

10th ICALEPCS 2005; P. Di Marcantonio, R. Cirami, B. Jeram, G. Chiozzi et al. : Transmitting huge amounts... 20f6

The ACS Bulk Data Transferovides C++
classes and ACS Characteristic Components,

stream endpoint
/\ | fow comecton ———— which implement the features described
flow endpoint ﬁ stream connection

above (we assume that typical ACS

A

- concepts/paradigms like Components,
% Manager, Containers, etc. are familiar to the
| reader, otherwise see for examii[6]). It
allows to connect &ender component (the
producer of data) with &eceiver component
(the consumer), creating dynamically as
many flows as required, and provides also the
Figurel: Basic stream configuration necessary mechanism toimic a multicast
behaviour (a Distributer which connects
multiple Receivers to one Sendefnce the
multicast is available only with the UDP protocol which does not guarantee the delivery ef all th
packets, the necessity to mimic the multicast belanaoises.

DESIGN AND IMPLEMENTATION

The ACS Bulk Data Transfer provides a wrapper and an adaptation of the CORBA A/V Streaming
Service (in the TAO implementation) to ACS, hiding most of its complexity from the user. C++
classes have been created (at presely C++ implementation is provided), which allow to create a
stream (and thus a connection between the Sender and the Receiver) adding to it as many flows as
needed. Once the connection has been successfully established, the Sender can immetiately star
send data either in a synchronous or in an asynchronous way. The Receiver, on the other side, can
receive data only in an asynchronous way by using a callback mechanism.

Besides C++ classes, an ACS Characteristic Component has been implementechntdiick and
uses these C++ classes, offering the developerfiissedly IDL programming interfaces. They are
briefly described in the following two subsections.

Sender ACS Component

The ACS Characteristic Component relative to the Sender is implenzanée@++ template class.
The template parameter is a callback which can be used for sending asynchronous data. This callback
class provides methods for sending data
POA_bulkdataz:BulkDataSender at predetermined useonfigurable time
intervals. To allow sending data in a
synchronousvay, a default callback class

CharacteristicComponentimpl

+eonneci(BuikDataReceiver)

+glisconnect)
+stantSend) is provided, which disables the
T +paceDatal) asynchronous mechanism.
| +stopSend() . .
| As shown in Figure 2, the BulkData
| Senderlmpl<T> template class realizes a
|| component providing the implementation
S for the BulkDataSender IDL terface
' |seuwderc:asmbacl:1J PE— (represented in the diagram by the
BulkDataSenderimpl | _ [senwmcamack’ CORBAgenerated POA_bulkdata::Bulk
: BulkDataSender | DataSender skeleton class). BulkData
(eonneEL B TGISRECIEE) | Senderlmpl<T> provides a concrete
Rl SEL AN IRl implementation for theconnect() and
+startSend(+initialize) np '
+paceDataf) SConnectToPREM disconnect() methods usingthe C++
b wrapper class (BulkDaBender<T>)The

connect method is responsible for the
Figure2: ACS SendeComponent class diagram ~ connection establishment with a Receiver
Component, passed as a parameter. By

reading from the Configuration Database

(see[2]) the connection parameters such as the number of flowe aftream, the protocol (TCP or

10th ICALEPCS 2005; P. Di Marcantonio, R. Cirami, B. Jeram, G. Chiozzi et al. : Transmitting huge amounts... 30f6

UDP), and the host and port number, ¢henect() method fully manages the creation of appropriate
flow endpoints with different settings. The other three methaidgtSend(),paceData(),stopSend())
are purely abstracand must be implementelly the user. Once the eoftbound connection is

correctly established, they are used to actually send short parargeté8er(d()) and hugeamounts
of data paceData()).

Receiver ACS Component

The ACS Characteristic Component rieato the Receiver is implemented also as a template class.
The template parameter in this case is a callback class, which has to be provided by the user and must
be used to actually retrieve and

CharacteristicComponentimpl POAbulkdata:BulkDataReceiver manage the recelved pa.rameters
and data stream (see destaop in

= +apenReceier) the next section).
|
|
|
|

*closeReceigvi() Figure3 shows the class diagram
2 for a Receiver Component. Two
| /’ methods are implemented in this
. s case:openReceiver(), which reads
b= = e.g. from the Configuration
e ~ — —__ Database all the connection

BulkDataReceiverimpl | ReceverCalback) — parameters as inthe Senqler case
: = | BulkDataReceiver and creates the required flow
:Slr;ESIlRR?Ei:?&IIU\;II% endpoints accordingly, and

i closeReceiver(), used to close the

connection.

As in the Sender case, the actual
implementation is delegated to the
C++ class BulkDataReceiver<T>.

Such a design and implementatiproves to be very flexible: the number of flows can be different
on either part, but only those that match against some criteria (like protocol, direction, and name
according to A/V rules etc.) are then actually connected. Note that the managing ofefimencr
connection establishing, reading of parameters etc., is completely hidden from the user point of view.
By providing the required callback to manage the received stream and by providing the data to be
sent, an interged user can use directly tBender and Receiver Components without the need for
further development.

Figure3: ACS Receiver Component class diagram

Receiver Callback and High-Level Hand-shake mechanism

In the TAO A/V Streaming Service, the Sender/Receiver architecture is implemented by using the
ACE Reactor Pattern (s¢&]), and uses a callback mechanism to actually manage the incoming data
stream. The providedTAO_AV_Callback class offers three methods to fulfil this purpose:
handle_start() and handle_stop(), which react when a start/stop is issuedeaospecific flow, and a
receive_frame (ACE_Message block *frame), which is used to get the received data, but has the
following limitations:

1. there is no possibility to send short parameters directly when a start is issued (for example an
UID to characterie the forthcoming frame, a string containing a filename to be openeq, etc.)
2. asynchronizaon problem occurs.

Point 2 is quite subtle. Data sent by the Sender are first received in theeG&\R memory buffer
of the involved host (whose typical defaudize for Linux Red Hat 9.0 is around 85 KB). Being the
ACE_reactor evendriven, as soon as data are available theqgistered callack methodis called
and data are consumed (the reactor concrete event handlerasetie frame() method, as descride
before). The limitation is thainternally the TAO A/V reads data only in chunks of 8192 bytes. It
could happen therefore that the Sendervesdhe acknowledgement of tlaest frame received even
if the data are still not fully consumed on the Reaeside (they are actually stored in the host TCP

receive buffer, but are not read yet). In this case a stop could be issued to early spoiling the last part of
the received stream.

10th ICALEPCS 2005; P. Di Marcantonio, R. Cirami, B. Jeram, G. Chiozzi et al. : Transmitting huge amounts... 4 0f 6

In order to overcome this problem, we implemented a-shaéle protocol
TAO_AV Callback | on top of this architecture, by inheritnfrom the TAO_AV_Callback (as
shown in Figure 4), and adding internally a new state management (not
::?EQE”E‘?E—EE:‘I[;E 8 shown). Before sending the raw data, a controhéras sent and analyzed by
+hanl:lle_stcnr:|[] the BulkDataCallback callback class The control frame contains the
= information (an ID) on whether the forthcoming streéam parameter or the
bulk of data, and the number of expected bytes length. The ID allows to call
internally the appropriate method (cbSart(ACE_Message Block *
param)/cbRecei-ve(ACE_Message Block * frame)) to distinguish between
parameters and data, whereas the bytes lenfgirmation permits to manage
BulkDataCallback and overcome the synchronization problem.
The haneshake mechanism described above is compldialgen to the

+chStany user. To receive fully synchronized paramétats she/he must only inherit
+chRecene() from BulkDataCallback and implement the three abstract methodBi(see
+ehston() 4), without knowing anything about what happepelow. Of couss this

causesome performance penalties, which is the topic of the next section.

Figure 4. ACS
Callback class

ACHIEVED PERFORMANCE

In order to evaluate the performance of the ACS Bulk Data Transfer we developed and implemented
two ACS Components (hereafter simply called the Seaderthe Receiver), following the design
described in the previous sections. The aim of the experiment was twofold:

» measure the throughput, i.e., the number of bits per second, sending data of different size from a

Sender to a Receiver;

e compare the measurdaroughput using three different mechanisms:

o simple CORBA call, i.e. sending an array of chars as a parameter of a CORBA

method;

0 ACS A/V with the hanegshake mechanism (hereafter called HS);

0 ACS A/V without the hanghake mechanism (hereafter called-NS).
To obtain meaningful results we deployed the two components on two Compaq PCs (P4, 3.0 GHz)
equipped with 1GB RAM and 80 GB HD connected via a 1Gbit Ethernet network. Both PCs were
isolated from the Institute LAN to avoid external network loads. Linuk IRat 9.0 operating system
and ACS 4.1.2 were installed on both machines.

The results are depicted Figure5, where on the >axis thebuffer sizes sent from a Sender to the
Receiver are reported, and on the Y axis the measuredghput. &Zery point is an average of
severalsamples. The error bars represent the error on the mean. The figure shows that:

* the throughput obtained via the Bulk Data mechanether with or without the handhake

mechanism is always better than ussngple CORBA call. The estimated gain is about 30%;
» the haneshake mechanism introduces some performance penalties (expected and discussed
below, sed-igure6), but only of the order of 0.5%;

» the CORBA performance is always wotkan the A/V streaming, and shows a fall for increasing

buffer sizes.

Figure 6 shows the comparison between data receiegtler with or without the handhake
mechanism. The performance penalties introduced by thedhahka medamism is largely due to the
need to overcome the synchronization problem.

An incomingSop call is blocked until ithe received data are cortcconsumed. Besides this, in
order to correctly distinguish between an incoming parameter and a datung, feeced to call the
underlying TAO A/V CORBA objects. Note however that these CORBA calls do not pass any value
and they are used just for symghization purposes. Stream data are always sent with -af-batind
connection. Therefore, as shown kingure 6, the overall overhead nmuduced by the harshake
mechanism is limited and comparablgth the no hanghake protocol.

10th ICALEPCS 2005; P. Di Marcantonio, R. Cirami, B. Jeram, G. Chiozzi et al. : Transmitting huge amounts... 50f 6

‘a‘ ~
[T} =
e} - . .
3_750:—
; —
3700
o C
£ -
650 —
600
:
500—
450F-
E L b Lo b b b b L
0 50 100 150 200 250 300 350 400

Amount of data (MB)

Figure 5: Overall measured throughput performances when transir
various amounts of data.

Finally, Figure7 shows and compares the linearity in the three ca$eslandshake and no hand
shakesamples are overlapped proving thksb in the case of the hastake protocahe linearity is
preserved.

Throughput (Mbits/sec)
=1
=]

790
780

L m Handshake
770

C 4 No handshake
760 —

50 100 150 200 250 300 350 400
Amount of data (MB)

S

Figure 6: Performance comparison between hahdke and no hand
shake mechanism; note that with increasing amount of data, the overhead
due tothe hanegshake mechanism decreases

DISTRIBUTER

Besides the described poeimpoint communication model between a Sender Component and a
Receiver, we are crently implementing also ®istributer model, which mimics a multicast
behaviour. The basic idea is that different Receivers, willing to get data from the same Sender,
connect to distributer Component. Thi®istributer receives data from the Sender arahages the
data dispatching by using eoft-bound connections. Such a design is necessary since the TCP

10th ICALEPCS 2005; P. Di Marcantonio, R. Cirami, B. Jeram, G. Chiozzi et al. : Transmitting huge amounts... 6 of 6

Total time (sec)
o

Y
III|I\II|IIII|\III|II\I|IIII|IIII|I

3
2
1
ol Lo v Lo Lo P Pevnn Povn i Lo Pag
0 50 100 150 200 250 300 350 400
Amount of data (MB)

Figure 7: Throughput linearity in the threeases. The straight lines are
just superimposed to better show the achieved linearity.

protocol does not support multicasting and we must guaranted|ttataaare correctly delivered

Since theDigtributer can be placed on a differdmist than the Sender, we can shield the Sender itself
(often a critical component in the system) from changing load due to a different number of Receivers.
Only the Distributer will be affect by such problems. Anyway, tBestributer model is still under
implementation and will not be described further in this paper.

CONCLUSIONS

The paper describes the design and the implementation of the ACS Bulk Data Transfer mechanism.
Performance tests at our Institute clearly show that it improves the overall pedesmahen
transferring huge amount of dateomparingto a simple CORBA callThe final gaincould be
estimated in the order of 30%. Woik ongoing to implement also dasbBibuter model to mimic
multicast behaviour.

REFERENCES

[1] J. Pisano et al., “ALMA cortator computer system”, Proceedings of SPIE vol. 5496, Glasgow
2004, 146.

[2] G. Chiozzi et al., “The ALMA common software: a developer friendly CORBAed
framework”, Proceedings of SPIE vol. 5496, Glasgow 2004, 205.

[3] N. Surendran et al., “The Design and Berfance of a CORBA Audio/Video Streaming
Service”, Proceedings of HICS® vol. 8, Hawaii 1999, 8043.

[4] OMG Audio/Video Streams Specification, v.1.0, http://www.omg.oregfagidoc?formal/2000
01-03

[5] D. C. Schmidt, S. D. Huston, “C++ Network Programming,uvité 2: Systematic Reuse with
ACE and Frameworks”, Addison Wesley, 2002.

[6] G.Chiozzi etal, “The ALMA Common Software (ACS): status and developments”,
ICALEPCS’2005, Geneva, Switzerland, October 2005

