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ABSTRACT 
We present and discuss the design, implementation and performance of the bulk data transfer 

mechanism developed in the framework of the ALMA (Atacama Large Millimeter Array) Common 
Software (ACS) [2][6] . ALMA will be the largest millimetre wavelength astronomical interferometer 
in the world consisting of 64 12-meters antennas, and the need for transferring efficiently huge 
amounts of data arises consequently. For example, a typical output data rate expected from the 
correlator (the device responsible for the processing of raw digitized data from the antennas) will be 
of the order of 64 MB per second [1]. Since all subsystems in ALMA rely on a communication 
infrastructure (ACS), which is CORBA-based, this poses some problems to meet the stringent QoS 
(quality-of-service) requirements. It is well known in fact that DOC (Distributed Object Computing) 
middleware, such as CORBA, increases the packet latency due to marshalling/de-marshalling, to 
usage of the IIOP protocol, etc. To cope with ALMA requirements and to overcome the CORBA 
potential bottleneck, we developed a transfer mechanism based on the ACE/TAO CORBA 
Audio/Video (A/V) Streaming service. This architecture uses CORBA for handshaking, but allows an 
efficient data transfer by creating out-of-bound stream(s) of data (i.e. bypassing the CORBA 
protocol), thus enabling ALMA applications to keep leveraging the inherent portability and flexibility 
benefits of the ACS middleware. Our infrastructure, which was put on the top of the ACE/TAO A/V 
Streaming service implementation, allows creating one or more out-of-bound flows in a simple way (a 
flow is a continuous sequence of frames in a clearly identified direction); each flow can be configured 
using different communication protocols (e.g. TCP, UDP) with a measured efficiency comparable to 
that of a raw socket connection. 

We designed and implemented also a Distributer model, which mimics a multicast behaviour. One 
or more receivers can subscribe to a common object (the Distributer) which receives data from one 
sender (e.g. the correlator), and dispatches them to all the subscribed receivers using out-of-bound 
connections. 

INTRODUCTION 
The whole software infrastructure for ALMA is based on ACS (ALMA Common Software) (for a 

detailed description see [2][6] ), which is a set of application frameworks built on top of CORBA. This 
poses some problems to meet the stringent QoS requirements for data transfer. In order to overcome 
this bottleneck, we have implemented a transfer mechanism based on the ACE/TAO CORBA 
Audio/Video (A/V) Streaming service [3], the ACS Bulk Data Transfer. This mechanism uses an out-
of-bound connection for the data stream (adopting communication protocols like TCP), thus 
bypassing the CORBA protocol and, at the same time, using CORBA for handshaking and leveraging 
the benefits of ACS middleware. 

This paper outlines the design and implementation issues of the ACS Bulk Data Transfer and 
analyzes the achieved performances. We  start by introducing some new terminology, and in the 
subsequent sections the provided tool is described. 

The OMG CORBA A/V Streaming Services specification [4]  (on which the TAO A/V Streaming 
Service is based) defines a stream as a set of flows of data between objects, where a flow is a 
continuous sequence of frames in a clearly identified direction. A stream is terminated by a stream 
endpoint, and can have multiple flow endpoints , acting as a source or as a sink of data (see Figure 
1). 
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The ACS Bulk Data Transfer provides C++ 
classes and ACS Characteristic Components, 
which implement the features described 
above (we assume that typical ACS 
concepts/paradigms like Components, 
Manager, Containers, etc. are familiar to the 
reader, otherwise see for example [2][6] ). It 
allows to connect a Sender component (the 
producer of data) with a Receiver component 
(the consumer), creating dynamically as 
many flows as required, and provides also the 
necessary mechanism to mimic a multicast 
behaviour (a Distributer which connects 
multiple Receivers to one Sender). Since the 

multicast is available only with the UDP protocol which does not guarantee the delivery of all the 
packets, the necessity to mimic the multicast behaviour arises. 

DESIGN AND IMPLEMENTATION 
The ACS Bulk Data Transfer provides a wrapper and an adaptation of the CORBA A/V Streaming 

Service (in the TAO implementation) to ACS, hiding most of its complexity from the user. C++ 
classes have been created (at present only C++ implementation is provided), which allow to create a 
stream (and thus a connection between the Sender and the Receiver) adding to it as many flows as 
needed. Once the connection has been successfully established, the Sender can immediately start to 
send data either in a synchronous or in an asynchronous way. The Receiver, on the other side, can 
receive data only in an asynchronous way by using a callback mechanism.  

Besides C++ classes, an ACS Characteristic Component has been implemented, which contains and 
uses these C++ classes, offering the developer user-friendly IDL programming interfaces. They are 
briefly described in the following two subsections. 

Sender ACS Component  

The ACS Characteristic Component relative to the Sender is implemented as a C++ template class. 
The template parameter is a callback which can be used for sending asynchronous data. This callback 

class provides methods for sending data 
at predetermined user-configurable time 
intervals. To allow sending data in a 
synchronous way, a default callback class 
is provided, which disables the 
asynchronous mechanism.  

As shown in Figure 2, the BulkData-
SenderImpl<T> template class realizes a 
component providing the implementation 
for the BulkDataSender IDL interface 
(represented in the diagram by the 
CORBA-generated POA_bulkdata::Bulk-
DataSender skeleton class).  BulkData-
SenderImpl<T> provides a concrete 
implementation for the connect() and 
disconnect() methods using the C++ 
wrapper class (BulkDataSender<T>). The 
connect method is responsible for the 
connection establishment with a Receiver 
Component, passed as a parameter. By 
reading from the Configuration Database 

(see [2]) the connection parameters such as the number of flows of the stream, the protocol (TCP or 

Figure 1: Basic stream configuration 

Figure 2: ACS Sender Component class diagram 
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UDP), and the host and port number, the connect() method fully manages the creation of appropriate 
flow endpoints with different settings. The other three methods (startSend(),paceData(),stopSend()) 
are purely abstract and must be implemented by the user. Once the out-of-bound connection is 
correctly established, they are used to actually send short parameters (startSend()) and huge amounts 
of data (paceData()). 

Receiver ACS Component 

The ACS Characteristic Component relative to the Receiver is implemented also as a template class. 
The template parameter in this case is a callback class, which has to be provided by the user and must 

be used to actually retrieve and 
manage the received parameters 
and data stream (see description in 
the next section). 

Figure 3 shows the class diagram 
for a Receiver Component. Two 
methods are implemented in this 
case: openReceiver(), which reads 
e.g. from the Configuration 
Database all the connection 
parameters - as in the Sender case - 
and creates the required flow 
endpoints accordingly, and 
closeReceiver(), used to close the 
connection. 

As in the Sender case, the actual 
implementation is delegated to the 
C++ class BulkDataReceiver<T>. 

Such a design and implementation proves to be very flexible: the number of flows can be different 
on either part, but only those that match against some criteria (like protocol, direction, and name 
according to A/V rules etc.) are then actually connected. Note that the managing of flow creation, 
connection establishing, reading of parameters etc., is completely hidden from the user point of view. 
By providing the required callback to manage the received stream and by providing the data to be 
sent, an interested user can use directly the Sender and Receiver Components without the need for 
further development. 

Receiver Callback and High-Level Hand-shake mechanism 

In the TAO A/V Streaming Service, the Sender/Receiver architecture is implemented by using the 
ACE Reactor Pattern (see [5]), and uses a callback mechanism to actually manage the incoming data 
stream. The provided TAO_AV_Callback class offers three methods to fulfil this purpose: 
handle_start() and handle_stop(), which react when a start/stop is issued on a specific flow, and a 
receive_frame (ACE_Message_block *frame), which is used to get the received data, but has the 
following  limitations: 

1. there is no possibility to send short parameters directly when a start is issued (for example an 
UID to characterize the forthcoming frame, a string containing a filename to be opened, etc.); 

2. a synchronization problem occurs. 
Point 2 is quite subtle. Data sent by the Sender are first received in the TCP-receive memory buffer 

of the involved host (whose typical default size for Linux Red Hat 9.0 is around 85 KB). Being the 
ACE_reactor event-driven, as soon as data are available the pre-registered callback method is called 
and data are consumed (the reactor concrete event handler is the receive_frame() method, as described 
before). The limitation is that internally the TAO A/V reads data only in chunks of 8192 bytes. It 
could happen therefore that the Sender receives the acknowledgement of the last frame received even 
if the data are still not fully consumed on the Receiver side (they are actually stored in the host TCP 
receive buffer, but are not read yet). In this case a stop could be issued to early spoiling the last part of 
the received stream. 

Figure 3: ACS Receiver Component class diagram 
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In order to overcome this problem, we implemented a hand-shake protocol 
on top of this architecture, by inheriting from the TAO_AV_Callback (as 
shown in Figure 4), and adding internally a new state management (not 
shown). Before sending the raw data, a control frame is sent and analyzed by 
the BulkDataCallback callback class. The control frame contains the 
information (an ID) on whether the forthcoming stream is a parameter or the 
bulk of data, and the number of expected bytes length. The ID allows to call 
internally the appropriate methods (cbStart(ACE_Message_Block * 
param)/cbRecei-ve(ACE_Message_Block * frame)) to distinguish between 
parameters and data, whereas the bytes length information permits to manage 
and overcome the synchronization problem. 

The hand-shake mechanism described above is completely hidden to the 
user. To receive fully synchronized parameters/data she/he must only inherit 
from BulkDataCallback and implement the three abstract methods (see Figure 
4), without knowing anything about what happens below. Of course this 
causes some performance penalties, which is the topic of the next section. 

 
 

ACHIEVED PERFORMANCE 
In order to evaluate the performance of the ACS Bulk Data Transfer we developed and implemented 

two ACS Components (hereafter simply called the Sender and the Receiver), following the design 
described in the previous sections. The aim of the experiment was twofold: 

• measure the throughput, i.e., the number of bits per second, sending data of different size from a 
Sender to a Receiver; 

• compare the measured throughput using three different mechanisms: 
o simple CORBA call, i.e. sending an array of chars as a parameter of a CORBA 

method; 
o ACS A/V with the hand-shake mechanism (hereafter called HS); 
o ACS A/V without the hand-shake mechanism (hereafter called NO-HS). 

To obtain meaningful results we deployed the two components on two Compaq PCs (P4, 3.0 GHz) 
equipped with 1GB RAM and 80 GB HD connected via a 1Gbit Ethernet network. Both PCs were 
isolated from the Institute LAN to avoid external network loads. Linux Red Hat 9.0 operating system 
and ACS 4.1.2 were installed on both machines. 

The results are depicted in Figure 5, where on the X axis the buffer sizes sent from a Sender to the 
Receiver are reported, and on the Y axis the measured throughput. Every point is an average of 
several samples. The error bars represent the error on the mean. The figure shows that: 

• the throughput obtained via the Bulk Data mechanism either with or without the hand-shake 
mechanism is always better than using simple CORBA call. The estimated gain is about 30%; 

• the hand-shake mechanism introduces some performance penalties (expected and discussed 
below, see Figure 6), but only of the order of 0.5%; 

• the CORBA performance is always worse than the A/V streaming, and shows a fall for increasing 
buffer sizes. 

Figure 6 shows the comparison between data received either with or without the hand-shake 
mechanism. The performance penalties introduced by the hand-shake mechanism is largely due to the 
need to overcome the synchronization problem.  

An incoming Stop call is blocked until all the received data are correctly consumed. Besides this, in 
order to correctly distinguish between an incoming parameter and a datum, we are forced to call the 
underlying TAO A/V CORBA objects. Note however that these CORBA calls do not pass any value 
and they are used just for synchronization purposes. Stream data are always sent with an out-of-bound 
connection. Therefore, as shown in Figure 6, the overall overhead introduced by the hand-shake 
mechanism is limited and comparable with the no hand-shake protocol. 

Figure 4: ACS 
Callback class 
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Finally, Figure 7 shows and compares the linearity in the three cases. The hand-shake and no hand-
shake samples are overlapped proving that also in the case of the hand-shake protocol the linearity is 
preserved. 

 

DISTRIBUTER 
Besides the described point-to-point communication model between a Sender Component and a 

Receiver, we are currently implementing also a Distributer model, which mimics a multicast 
behaviour. The basic idea is that different Receivers, willing to get data from the same Sender, 
connect to a Distributer Component. This Distributer receives data from the Sender and manages the 
data dispatching by using out-of-bound connections. Such a design is necessary since the TCP 

Figure 5: Overall measured throughput performances when transmitting 
various amounts of data. 

Figure 6: Performance comparison between hand-shake and no hand-
shake mechanism; note that with increasing amount of data, the overhead 
due to the hand-shake mechanism decreases. 
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protocol does not support multicasting and we must guarantee that all data are correctly delivered. 
Since the Distributer can be placed on a different host than the Sender, we can shield the Sender itself 
(often a critical component in the system) from changing load due to a different number of Receivers. 
Only the Distributer will be affect by such problems. Anyway, the Distributer model is still under 
implementation and will not be described further in this paper. 

CONCLUSIONS 
The paper describes the design and the implementation of the ACS Bulk Data Transfer mechanism. 

Performance tests at our Institute clearly show that it improves the overall performances when 
transferring huge amount of data, comparing to a simple CORBA call. The final gain could be 
estimated in the order of 30%. Work is ongoing to implement also a Distributer model to mimic 
multicast behaviour. 
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Figure 7: Throughput linearity in the three cases. The straight lines are 
just superimposed to better show the achieved linearity. 
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