10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO1.012-1 (2005)

Development of the control system for the 40m radiotelescope of tkeAN

using the Alma Common Software

P. de Vicenté, R. Boland, L. Barbast

'Observatorio Astronomico Nacional, Yebes, 19143 Guadalajara, Spain

Abstract

The Observatorio Astrondmico Nacional (OAN) is building a 4@utiotelescope in its facilities in
Yebes (Spain) which will be delivered by Spring 2006. The servosystd be controlled by an
ACU (Antenna Control Unit), a computer running Windows XP andnGmT, a real time extension
developed by Beckhoff and provided by the company contracted faliimg the antenna servo
system. The ACU may be commanded from a remote computt@mnotwo local panels.

The radiotelescope is an instrument composed of antennaverscebackends, and auxiliary
equipment connected through a Local Area Network (LAN)ctistrol system has to deal with a
distributed environment which needs to be remotely controlled randitored from external
heterogenous users (astronomers and engineers). We have chaddemat@mmmon Software (ACS)
framework because it fulfills the requirements of the cordystem for the 40m radiotelescope. The
control system requires multiple processes simultaneouslkingoand being synchronized. ACS
provides an implementation of the component/container paradignCommon Object Request
Broker Architecture (CORBA) and also provides general purposetyutibraries, hiding the
complexity of CORBA to the developer. ACS supports Python, C++ aval dvhich allow the users
to manage the radiotelescope using applications which run inretiffeperative systems. ACS is
supported by the European Southern Observatory (ESO) and the NaRad@mastronomy
Observatory (NRAO) for the Atacama Large Millimeter ArfALMA) with a lifetime similar to our
radiotelescope. This is an important guarantee for the OAlNanvery reduced software team.

We present an overview of the software architecture ofatietelescope and the current status of
the development of the components. We have grouped individual instisimé&h a common
relationship in packages. Each instrument is controllednbftCS component and the whole package
is managed by one container. Each container tipically rursslonux computer. We have developed
components which use in home developed libraries for using Gerl, and ethernet ports which
allow us to manage instruments via different hardware intesfaée have also developed
components to compute astronomical ephemeris. All our sofiwamntributed with a LGPL license
to the CVS contrib area of ESO.

Introduction

The Observatorio Astronémico Nacional (hereafter OAN)U#ding a 40m radiotelescope in its
facilities in Yebes (Spain) which will operate betweeand 110 GHz and which will be delivered in
spring 2006. This telescope has been designed by the german cofiBinfechnologie and is
being built by the spanish contractor Schwartz-Hautmont. It inéldevoted to single dish and Very
Long Baseline Interferometer (VLBI) observations with thedpean VLBI Network and the global
VLBI network.

The antenna servosystem will be controlled by an antenna komito(ACU) supplied by the
german company BBH. The ACU is composed of two different <®hich control the main axis of
the antenna and the subreflector respectively. The main akisw@dPrun Windows XP with a real
time extension called TWINCAT developed by Beckhoff. The didwtr CPU will run VxWorks.
The ACU may be commanded by a remote computer using TCP conndttiongh a local area
network (LAN) and/or from two local control touch panels dteatto the Windows CPU through

10th ICALEPCS 2005; P.deVicente, R.Bolafio, L.Barbas et al. : Development of the control system for the 40m... 20f6

serial ports. The interface control for the ACU which is atraefinitive has been jointly defined by
the OAN and the BBH personnel and currently is being implesdemny BBH.

The absolute time (UTC) will be kept in the ACU computengisSTWINCAT. The OAN will
provide an IRIG-B signal from a GPS receiver to theGH card in the ACU computer. This
receiver will simultaneously synchronize other equipment using (Network Time Protocol) across
the LAN. This setup will allow the ACU to be synchronizeithwother equipment and to the UTC
with an error of a few ms.

BBH has provided recently an antenna simulator with an &0#s functionality which contains the
local control panel software, the remote interface fomtlagn axis of the antenna and large parts of
the real-time control software including the antenna trajgcgenerator. This allows the OAN
software team to develop the remote control software andalpartest it against the simulator
previous to the antenna delivery reducing the commisioning time.

Choice of ACS

The radiotelescope is a complex instrument composed dfratiff equipment: antenna, receivers,
backends and auxiliary devices (weather station, GPS receteenperature probes and
radiofrequency synthesizers...) which can be controlled and meshitemotely through a LAN and
which in some cases need to be synchronized in time ettuTC. Therefore it is a distributed real
time environment. These equipment can be used by engineers ambmsrs with a different
philosophy. Engineers will tipically need to monitor and conindlividual equipment mainly for
testing purposes. They usually use Windows computers and wardrkoremotely since in many
cases the equipment will be located in unaccessible placesngntie dismounted and taken to the
laboratory in case of malfunctioning. Astronomers will use rdiotelescope as a whole, without
knowledge of individual equipment, and need to control and monitor elescbpe remotely.
Astronomers usually use Linux and require an automatic operatame which allows to make
scheduled observations in absentia.

This scenario requires a system which fulfills these requents. We believe that CORBA is a good
choice to achieve this goal because it allows the communicttiidie done independently of the
location where the processes run. CORBA is also platformlaarglage independent and fits the
heteregoneous needs of astronomers and engineers. However, CORBstdws learning curve and
the remote control of the OAN 40m radiotelescope is beinglajgs@ by a team of 3 people partially
devoted to this work. There is not enough man power and time cesaorlearn new complex tools .
Currently the total developer amount of time for the 40m ra@ietepe control is 1.5 FTE.

ACS uses the component/container model via CORBA, provides gguepalse utility libraries
and tries to hide the complexity of CORBA to the developer tiagute time devoted to coding. It
supports C++, Java and Python. ACS is supported by a tedaevabpers from ESO and NRAO for
the Atacama Large Millimeter Array (ALMA) and its diime matches that of the OAN
radiotelescope. The first ACS public stable version (3.1) wadlahle in October 2003 when the
OAN began searching for software tools to develop the contritieoiOm radiotelescope. The 40m
radiotelescope is foreseen to last for 25 years, a sirpédaod to that of ALMA. These facts
guarantee that ACS will be regularly updated and maintaanédhat the OAN small software team
gets a good suport from the ACS team. In the last year a nonAAREIS community is growing
among other observatories which extends the support and eventualbtlaw the reuse of ACS
software code reducing the amount of work for our team.

Experience with ACS at the OAN

We first tried ACS version 3.1 on November 2003. ACS isiafic supported on the RedHat
Enterprise Linux distribution, however the standard Linux distiobuin the OAN is Debian. The
first task the OAN software team performed was to ih&@lS on Linux computers running Debian
and use as many tools provided by the distribution as pos$itdesmall tuning needed to install in
Debian was reported back to the ACS team who modified songt files in later versions making

10th ICALEPCS 2005; P.deVicente, R.Bolafio, L.Barbas et al. : Development of the control system for the 40m... 30f6

easier the installation on different Linux distributions. Theailtetion instructions for ACS in Debian
can be found on the ESO Alma Common Software Twiki and theeyegularly updated to the latest
Debian and ACS versions by one of the authors of this report.

ACS is compiled at the OAN on one Linux computer aftetabls realase. We keep an updated
copy of the latest stable ACS version from the ESO publi€.GYce compiled it is transferred to 6
Linux computers with the same distribution and packages asrgteofie. One of these computers
runs the Manager and the ACS services. Development is pedamthree different computers (one
per team member) and when the code compiles and is functtoisatdmmited to a local CVS
repository. If we believe that the code may be useful for othensuwe commit the code to the public
CVS contrib area in the ESO. All our code is licenced LG®keep it compatible with the ACS
license.

Although ACS hides the complexity of CORBA, developer$ rstied to devote much time to learn
how to program under this environment. Not having followed a trainoingse all our experience
comes from self learning, reading documentation and unvalbelgefrom the ACS discussion users
mailing list.

Up to now we have used the basic ACS functionalities: ecmrtaomponent model, DevlOs for
accessing hardware, error system, notification channels aniddogygstem. In the future as our needs
and the complexity of the control system increases we intendd the archiving system, the time
system, the alarm system and the bulk data transfer sydferbelieve that a negative consequence
of self learning and being a small software development tedhaisve will need to modifiy and
eventually rewrite part of our code to include some of the A@Sices that we do not use at this
moment.

Typical developing strategy using the ACS

As already mentioned before, the radiotelescope is compokestveral instruments. Each
instrument or device is to be controlled by one ACS componentdétr component that we develop
we follow the same basic procedure:

1. create a directory structure for the component usingeéhdenpl at e ACS tool.

2. write a pure (non-ACS) C++ class which implements all tleibnality of the equipment and
uses libraries to manage the hardware interfaces if necessary.

write an XML file with the exceptions we intend to throw.

include the ACS exceptions defined in the XML file in the L& class.

create the IDL interface for the component defining its pragseaind methods.

run the HPT code generator which creates templates fangiementation files, the Makefile, the
XML schema and the XML instance files.

. develop the implementation files (header and cpp).

write the DevlO files which usually call the methods ofdlaess defined in step 2.

Fill in the characteristics (maximum value, minimum vallefault value, description, ...) of each
property defined in the IDL interface and located in the L Xikstance file and place it in the
central Component DataBase (CDB).

10. Define which container will manage this component.

11. Develop a graphical client.

12. Commmit the code to the local CVS server.

In some cases, like when using the notification chanaedawnot follow all these steps since, for
example there is no need to define propeties.

This process, including testing and debugging may take a omimimf one week for simple
components and may last several weeks for complex comporientidi ACU. The minimum time
devoted for the component, not taking into account the graphicat atizy be of 3 days. Automatic
generation of code is very important to reduce the coding timpragdamming errors.

Components are always developed in C++, and clients &tenanin Python or Java. For graphical
clients in Python we use the Qt toolkit which is not inclugtethe tools distributed by ACS but used

o gk w

© o N

10th ICALEPCS 2005; P.deVicente, R.Bolafio, L.Barbas et al. : Development of the control system for the 40m... 4 0f 6

by other non-ALMA ACS teams. Qt Designer is an excellent twotfeating widgets and layouts.

Components are grouped in containers which manage its liéeapd provide additional services.
From the point of view of the developer there is no need to deeslpgode for the containers. We
usually group components by relationship and create one containempauter, although sometimes
we place several containers on one computer. For example theadliotelescope will have an
holography system which will be used to determine the qualitheokurface of the antenna during
commisioning. The holography system is composed of one downconverteradinéequency
synthesizer, two temperature probes, one continuum detectoonandFT analyzer. Each device is
implemented by one ACS component and all of them are managedihyi@ container running in a
devoted computer.

The ACS logging system is a very useful system used in coigamith “jlog” the logging client
provided by ACS for debugging purposes. The generic client, 8DBpeplorer” is also an extremely
useful tool for testing and debugging the component prior to develapgnaphical client.

Overview of the software architecture for the radiotelescope

We intend to work in two consecutive stages, the testiage and the production one. This will
allow us to be able to make simple observations during therentmmissioning. During the testing
stage the radiotelescope will be commanded and monitorad am-line mode; users will control in
real time the antenna and equipment necessary for observattds the OAN LAN. In the final
production one, the users will be able to schedule and queue ols®s\edim outside the OAN LAN
and it will not be necessary to be on-line while observing.

Observing tool ‘ ‘ Scheduler/Queuer‘

-

‘ Observing engine‘

‘ Data Writer ‘
» Weather Stl
»‘ Optical telescop
] Regeivers

» Backends
» Antenna

Figure 1. Overview of the foreseen architecture as vieweud fine point of view of the users.

Figure 1 shows a simplified diagram of the control systeimtaature from the point of view of the
users: the observer (astronomer) and the operator/engineerobBeever will be able to make
scheduled or on-line observations using an observing tool. Thevmgsengine will command and
monitor the receivers, backends, antenna and the data acquasitiarchiving. The operator and the
engineers will be able to control directly the receiverskbads , antenna and auxiliary equipment.

10th ICALEPCS 2005; P.deVicente, R.Bolafio, L.Barbas et al. : Development of the control system for the 40m... 50f 6

The central module will be the observing engine implemeimtdélython. This component will
connect to a generic antenna component which commands the aatehmonitors the azimuth and
elevation and its errors. The observing engine will atsmect to the ephemeris module to obtain the
coordinates of the source to be observed and to the backend=scaivérs components and the FITS
writer component. Using the azimuth and elevation errors ladUTC time it will synchronize the
acquisition of data by the backends and the generation of a FtaSildaThe observing client will
be accessed by the user through a graphical observing tool iraddva command line shell in
Python.

The Antenna component has four properties to monitor the commanmuhedth and elevation, and
the difference between the commanded and current azimuteleration, methods to track a source
on the sky, and to perform several type of strokes while tradk{fum-off', on the fly maps and raster
maps). It will also provide a method to construct an obsenahlp with a stepwise or continuous
interpolation which allows to move the telescope in an anyitway around the tracked source.

We will develop a component common for all receivers. Ctiyreme are defining a generic
interface with properties and methods common to all of th@eplan to have 11 cooled receivers
and one non-cooled receiver in the long term. Currently onlydmecooled receiver has been built.
Receivers are to be controlled from PC104 CPUs running aedded Linux version. We will try to
install ACS on these CPUs to run a container which managea®ceiver component. If this strategy
is not possible we will run the component-container on another hosalarno these CPUs using the
socket library developed in home.

We intend to develop components for two backends already &wlntinuum detector and an
autocorrelator. The third available backend is the VLBI ormchvuses an independent software
system. In order to connect this system to the ACS weewdhtually modifiy an ACS antenna client
being developed by the Istituto di Radioastronomia (INAF) aty.ltdhis client will allow to
command the antenna from the Field System.

Data from the backends will be transferred using the A@@& bulk transfer system and written to
the FITS format. We will posibly use the ACS FITS datatevrirom APEX which may need some
modification to adapt it to our needs.

The observing tool using the command line in Python will alsadagted from APEX. No work
has been performed in this direction up to now.

Other systems are the weather station, a Global Positi@yisigm (GPS) receiver, the optical
telescope used to test if the antenna tracks and points tgreetime interval counter for comparing
the maser signal to the GPS system and temperature probdfeiant places. All of them will be
available to the Observing engine and provide important infdom#or the observations.

Components developed with ACS

Most of the equipment used for the radiotelescope conneut twotnputers via serial, ethernet or
GPIB ports. We have developed C++ libraries for each of theses.

Since connection through serial ports usually requires one tenyper two ports (unless using a
multiport card), we have started to use comercial sariathernet converters. These converters are
small, may managed remotely using the LAN and provide 4 oridd perts. It is possible to address
each serial port using the converter IP address followed by orieagdress. The control and
monitoring is done using a socket library we have written @t {purpose. These devices are
specially useful for the holography system and the opticaddepe since they are located on the
subrflector of the antenna. Both systems require a tofakefial ports on a location which is usually
unaccessible, moves constantly and exposed to extreme temgeratur

GPIB devices are controlled using the public binary driverdada for Linux from National
Instruments. The GPIB devices are physically connected ® W@ PCIl cards from National
Instruments.

Up to now we have developed 7 components each for one difesqeipiment: the weather station,
a time interval counter, an holography downconverter, a frequenchiesyrgr for the holography

10th ICALEPCS 2005; P.deVicente, R.Bolafio, L.Barbas et al. : Development of the control system for the 40m... 6 of 6

receiver, a continuum detector, an optical focuser for the abptidescope and the ACU. These
components represent our starting development on the ACS amg mmare components should
follow in the near future. These components have provided us inseiglifferent services provided

by the ACS. For example the weather stations uses the AC&ainifi channel to provide weather
information to any client which suscribes to that channel.

The most complex component we have developed up to now is theoA€ Ut uses the ACS error
system, ACS logging system and ACS threads. Its IDL iaterprovides the same methods as those
described in the Interface Control Document provided by BBH.Jhe pure class uses the socket
library developed in home. We have recently started to develdava graphical client which
simulates the console of the antenna and which should be antoséfior the engineers.

We intend to distribute this tool and other Java clientsguie Java Web Start technology which
allows any user to install it on its computer without ingtgllACS previously.

ALMA uses astronomical libraries which are not GPletised. We have developed one module
made up of three components for computing astronomical epherAearigstroTime component
computes time ephemeris and provides methods for conversions hetaleadar and time to and
from julian day and to and from Greenwich sidereal timee AstroLocation component provides
properties and methods to convert from geocentric coordinageEottetic ones on the surface of the
Earth. This component also uses the AstroTime component to diaiocal sideral time on a given
location on the surface of the Earth. The AstroSource componendgsoprioperties for storing the
coordinates of astronomical sources and methods to computecoeainates, apparent coordinates,
convert from different reference systems: galactic to/fexquatorial, horizontal to/from equatorial
and compute the radial velocity of the sources referrediffierent reference systems. The
AstroSource component uses the AstroTime and AstroLocation contpdngasrnally. This module
has been checked against the JPL ephemeris available iretnisimg a graphical PyQt client.

Status of the control system and future tasks

The control system for the 40m radiotelescope is at thenprise in an early development stage.
Currently only some instruments can be controlled and moniteredtely.

We have completed the ACU component which should move and mtrétantenna mount but it
has only be tested against the simulator and it may suffential pawrite yet. A Java client is being
written. Currently the generic antenna component which hides tHé édnplexity and uses the
ACU component internally is being developed.

In the near future we will develop components for the optelaktope system composed of a
remote focuser, a CCD camara, and a remote cover. Thigreysis priority because it will be used
in the commisioning of the 40m radiotelescope before the resaveravailable.

The first available receiver will be a non-cooled one for halalgy observations for which we have
already developed some components. Our main effort in thdutaee will be devoted to the transfer
of data from the continuum detector to the FITS writer. Compsnien other receivers will follow
later.

The component to control and monitor the autocorrelator backehtha observing tool will be
delayed until other components are finished. We intendusereode from other projects like APEX
and the INAF modifying the code to fit our needs.

References

[1] G. Chiozzi. ALMA Common Software: a developer frien@DRBA based framework. Paper
5496-23. Glasgow, Scotland: SPIE, 2004.

[2] G. Chiozzi. ALMA Common Software (ACS): status and depments. Geneva, Switzerland:
ICALEPCS, 2005.

