10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, WE4A.1-50 (2005)

DEVELOPMENTSTO THE SLSCORBA FRAMEWORK
FOR HIGH LEVEL SOFTWARE APPLICATIONS

M. Boge, J. Chrin
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

ABSTRACT

A CORBA based client-server framework has been in activeiceisince the start of SLS in 2001.
It provides for an uniform interface to a variety of persidt®bjects required by beam dynamics
applications in the domain of controls, accelerator mauiglldatabase transactions and message log-
ging. The framework underwent significant developmentrduthe course of the last two years moti-
vated by advances in hardware capabilities, recent reded$eORBA packages and a renewed analysis
of user requirements. Several additional software modukre developed and integrated into the up-
dated framework to facilitate rapid application developmeThese includeevent processing agents
which serve to aggregrate low-level hardware data to pr@domplexevents which supply summa-
rized data to event channels for distribution to registalezhts. The recent updates to the framework
are presented, together with an account of how complex gwentcreated and processed for delivery
to registered consumers through the CORBA Event Service.

INTRODUCTION

The initial interest in using CORBA as an high-level middérer in the development of beam
dynamics applications dates from Summer 1999 [1]. Severakgc tasks common to high-level
applications were identified and developed into reusablapoments as CORBA objects, provid-
ing functionality for accelerator device control, datailmation and analysis, accelerator modelling,
database operations and message logging. The use of CORB&rfgerved to realize the potential
benefits of distributed computing, an important considenagiven the computer intensive accelera-
tor model procedures, and provided for the interopergbilégtween objects implemented in different
programming languages. The broad scope of objects devkkgesequentlgxtendedhe developers
preferred programming language, typically Java and TclApplication developers could henceforth
focus on the specifics of the application at hand, such adajexg user-friendly graphical interfaces,
rather than be faced with the intricate details of the marmliegtion programming interfaces (APIS).

The CORBA framework underwent significant developmentriuthe course of the last two years.
Modern computer hardware was commissioned to meet withritreasing demands imposed on the
server hosting the CORBA objects, referred to as the ‘MoaeV&’, and recent versions of CORBA
software packages were likewise installed. In additiomhier software development served to con-
solidate the manner in which selected data from the lowtleaedware are aggregrated gelligent
agents These act to triggesomplexevents that are propagated to high-level applicationsutitr@vent
channels supplied by the CORBA Event Service. Clients newyl subscribe as a consumer to the
appropriate event channel to passively receive updategsal

HARDWARE AND SOFTWARE PLATFORMS

Beam dynamics applications are constructed using a dienver framework [1, 2, 3, 4] wherein
client applications typically operate on consoles locateithe accelerator control room and connect to
a dedicated ‘Model Server’ that negotiates access to theatsrardware, the accelerator model and
the database on the client’s behalf. With increased denfamuishigh-level applications, e.g. the incor-
poration of the control of the fast orbit feedback [5] inte tbrbit correction application [6], the ‘Model
Server’ hardware of old was replaced by a dual-processdrHasverEdge 2650 Server running Red
Hat Linux v. 7.3. The server features two 2.8 GHz Xeon pramsswith Hyper-Threading Technology,

10th ICALEPCS 2005; M.Boege,J.Chrin et al. : Developments to the SLS CORBA Framework for High Level So... 20f5

512K memory cache per CPU, 2 GByte of RAM, a 1 GBit/s Etheraetl @nd a RAID controller that

duplicates data onto a second, hot-plug, 36 GByte SCSI hare providing additional data security.
It is also equipped with two hot-plug power supplies. A setaentical server is available to provide
redundancy. The introduction of the high performance hardwvas combined with the installation
of recent releases of our CORBA products namely MICO (C++ piray), ORBacus/JOB (Java) and
Combat (Tcl). The new MICO release [7], our principal ORBleaets a tighter implementation of the
specifications formulated by the Object Management Groud®p[8]. In particular, a more robust

Event Service was necessitated that now provides the wemnspechanism by which logical sets of
control and physics data are propagated to high-level egamins.

Client applications run on Linux PC consoles, typically ipgped with a single-processor Pentium 4
2.8 GHz CPU, 512K Cache and 2 GByte of RAM. The Red Hat Packagealfer (RPM) is used for
the distribution of the required software.

With the continual advancement of computer hardware cépebiand evolving Linux kernels, a
preference towards the Scientific Linux operating systemapgdly emerging Linux standard in the
experimental physics community, is anticipated. In prafpan for these developments we have also
successfully implemented our CORBA framework on a quaagssor server machine hosting Scien-
tific Linux v. 3.0.4. The server features four 2.2 GHz Pentpnocessors with 2 MByte memory cache
per CPU, 4 GByte RAM, four 73 GByte SCSI hard drives and a RAdDtmller.

AN EVENT SERVICE FOR DATA PROGAGATION

The CORBA synchronous request/response exchange is tigastiameans of communication be-
tween a client and server. Following a reappraisal of usguirements, however, it became apparant
that several situations exist where the accustomed twoewmaymunication model is not the optimal
means of data transfer. One example is when a group of retiédes, of interest to many clients,
changes value. Each client would be required to either pelkerver repeatedly for updated values or
establish a more involved callback procedure. In such casga propagation is better served through
an alternativereactive form of programming wherein clients are notified massef updated values.
Such a delivery mechanism has been specified by the Objecadéament Group’s (OMG) Common
Object Services (COS) Specification Volume [8] in the fornthef Event Service and its extension, the
Notification Service. The latter, being a recent additiotheoriginal OMG COS Specification, is yet
to be released in MICO. The OMG Event Service supports ddeduppmmunication between multi-
ple suppliers and consumers. The following describes hawidwel hardware events are aggregated
to producecomplexevents that are propagated through the Event Service jimgvagbplications with a
more personalized view of a given component of a controkesyst

Complex Event Processing

Fig. 1 illustrates how control data are aggregrated byant processing agefEPA) to produce
acomplexevent which is propagated to those applications subsgriagconsumers to the designated
event channel. A typical EPA uses the CDEV API [9] to estébtiscallback mechanism to the EPICS
based control system [10], the communication protocol afctvlis channel access. In general terms,
the EPA is a simple object that consistsevent pattern rulescomprised of arigger and abody of
actions, and local variables whose values form its state. HPA monitors its input to detect instances
of the rule triggers. When a maitch is detected, the agenug®the action of the rule’s body. Events
that are output depend on the class of the EPA [11]. Threeeproypes are ijilter - reduces event
execuctions to relevant subsets,nigp- aggregrates and correlates events, anddistraint- detects
proper and improper behaviour.

Theevent pattern ‘mapis the class of most relevance here. Mapsawant pattern rulet aggregate
a partially ordered set (posed)f events into high-level events and, as such, are the basefining
relationships between sets of system-level events ancthigiiel abstraction events. Fig. 2 shows a

10th ICALEPCS 2005; M.Boege,J.Chrin et al. : Developments to the SLS CORBA Framework for High Level So... 30f5

generic template for a map agent that aggregates causarssgguof events in its input, and creates an
event consisting of a sequence of values that summarizegtivegated data. With reference to Fig. 1,
an invocation of the CDEV callback function causes the EPAhange its local state variable(s) and
its output event. When the trigger is satisfied@anplexevent, i.e. an aggregration of the low-level

hardware event, is formed and routed to its designated ebhamnel.

Application layer

(GUI]

g Consumer

. event channel
Analysis layer

4 Supplier R
Event Processing Agent
N CDEV Callback)
Device layef channel access |
Low-level
hardware

Figure 1. Data aggregation and propagation.

Map Agent
In Actions Out Actions
Devicel (Value, Mode, TS, ...)
Device2 (Value, Mode, TS, ...) Sequence Device(...)
DeviceN(Value, Mode, TS, ...)

Map Interface Specification
Behaviour Devicel —> Device2 —> ... —> DeviceN

==> Sequence Device (Valuel, Value2, ..., ValueN)

Trigger on low-level events: Devicel, Device2, ..., DeviceN
Create Complex Event: Sequence Device

Figure 2: An event processing agent implementing the evattem map.

EPAs exist for the aggregration of data from various typesasftiware devices, including Beam
Position Monitors (BPMs) and various magnet groups, suahttie corresponding event data provide
a personalized view of a given component of the control systBvo uses of EPAs, which exemplify
their purpose, are briefly desribed.

EPAsfor BPMs Separate EPAs exist for BPMs from the different acceleffaialities, namely the
injectors, the booster and the storage ring. The princasM of these EPAs is to aggregate and analyze
a set of BPM data, and to supply the summarized results tdfpegent channels serving various
clients. These include the high-level Tcl/Tk based orbitection application and the Java application
responsible for the determination of the effects of theriime devices on the closed orbit.

In addition, an EPA has been developed for the analysis aériliee contingent of BPM waveforms.
For the storage ring, this constitutes 216 waveforms fronBPR21s. Independent averages are cal-

10th ICALEPCS 2005; M.Boege,J.Chrin et al. : Developments to the SLS CORBA Framework for High Level So... 40f5

culated by the EPA, both over the complete waveform and dvevaaeforms for a given waveform
element, to produce a complex event that is supplied to theifsgd event channel. This latter data is
of relevance when the storage ring is operating in turn-by toode.

It is interesting to note that the viewing of these complegres at an high-level could be credited
with the detection of anomalies that would otherwise noeHaeen detected if only the low-level events
were monitored. The onset of such an high-level anomaly avimitiate a trace back procedure in order
to locate the cause of the problem at the system-level.

The Tune EPA The computer-intensive calculation of the machine tunarpater has also been
incorporated into an EPAPosetsfrom a dedicated ‘Tune’ BPM are aggregated and whenethent
pattern ruleis triggered, through a data transfer complete acknowlee@gé the tune calculation is
performed. A ‘physics’ output event is subsequently crdathe form of which is a tuple of data
containing a sequence of the measured vertical and hoalzootnponents of the tune values. The EPA
additionally stores the full data complement, includingttbf the ‘Tune’ BPM waveforms, in virtual
memory space, avoiding time consuming input/output operat A dedicated CORBA ‘Tune Server’
provides methods that enable a client to both regulate ipptameters to the tune calculation and to
retrieve the full complex of results from the virtual datarst

Event Delivery Models

In the OMG Event Service model, suppliers produce eventscandumers receive them. Events
are propagated through an event channel which acts as atordsii@ween the consumer and supplier.
Communication is anonymous in that the supplier does na kagwledge of the receiving consumers.
Event channels support different models of event delivitbig/type of which depends on the collabora-
tion between suppliers and consumers. This is illustratdeig. 3 which highlights the push and pull
mechanisms established between the event channel andpbleesiconsumer. The various push-pull
permutations lead to the four event delivery models shown.

event channe{_ |

Direction of event flow

Figure 3: The event delivery models. Path-b represents the canonical push model; patkd the
canonical pull model; pata—d the hybrid push-pull model; patt+—b the hybrid pull-push model.

Fig. 3 further serves to emphasize that an event channeldgafulfill all four roles simultaneously.
Note that while the flow of events is always from supplier tagamer, the invocation of the method
call, by which the event is transmitted, can be in eitherdios.

The task of creating event channels, which exist in the addspace of the CORBA Event daemon,
has been intentially kept separate from the EPAs which, sigdeserve as the single data source to a
given event channel. Rather, event channel creation idd@hg a separate program that is initiated at
server boot time. New event channels may also be added orythe dldding entries to a configuration
file. Typically event channel data is grouped according tekrator components (e.g. storage ring,
booster and injectors) and device types (e.g. magnets, BPMs

The event channels are the primary source of informationigers and are optimized to satisfy their
reporting needs and so that no further data manipulatioagsired on the client side. Indeed, much
of the data on display in beam dynamics applications aravetén this way, with the canonical push
event delivery mechanism being the most employed.

10th ICALEPCS 2005; M.Boege,J.Chrin et al. : Developments to the SLS CORBA Framework for High Level So... 50f5

Migration To The Notification Service

The CORBA Event Service implements a publish/subscribdicgtipn paradigm that provides for
a natural programming style in which pertinent data can lssipaly received by any interested client
application. Certain drawbacks nevertheless exist imetuthe necessity to propagate event data under
the auspices of typ€ORBA::Any the absense of event filtering and the lack of explicit dquaif
service (QoS) control. These limitations have been adddelsg the OMG Group and are alleviated in
the Notification Service largely through the introductidntlze structured event typevhich provides
a well defined data structure into which different event §ypgay be mapped. The Event Service is
eventually to be superseded by the Notification Service shahCORBA releases that include the
Notification Service no longer require an Event Service anpntation to be compliant with OMG
Specifications. A first examination of the Notification Seevreveals many notable features, including
the ability to filter out unwanted data and to further pubkbstd transmit only those precise events for
which there are interested clients. The efficiency and perdoce of the Notification Service would
however first need to be appraised, an important considarb&ing the speed with which event filtering
and delivery is accomplished. Since the Notification Senigca super-set of the Event Service, the
present event delivery model could otherwise be preserved.

SUMMARY

An updated CORBA based software framework has been impl&tem recently commissioned
high-performance hardware offering improved responsegiand greater stability. The software de-
velopments have served to consolidate the CORBA Event &ead the standard event delivery mecha-
nism for the propagation of aggregated low-level and otla¢x tb beam dynamics applications. Several
event processing agentEPAS) that act as data suppliers to the CORBA event chahaels been in-
tegrated into the new framework. The EPAs are responsibléhéocapture of data from components
of the low-level control system, their transformation aciing to predefined rules and their subsequent
delivery to event channels. These event channels are thayrisource of information for users and
are optimized to satisfy their reporting needs. The upd@@&BA based framework has proved to be
both reliable and stable by the many applications deplogela operation of the SLS.

REFERENCES

[1] M. Boge, J. Chrin, “A CORBA Based Client-Server Modet BBeam Dynamics Applications at the SLS”
ICALEPCS’99, Trieste, Italy, p. 555.

[2] M. Boge, J. Chrin, “CORBA Objects for SLS Subjects”, FR2& 2000, Hamburg, Germany.

[3] M. Bdge, J. Chrin, “On the Use of CORBA in High Level Sofive Applications at the SLS”, ICALEPC-
S’01, San Jose, USA, p. 430.

[4] M. Bbge, J. Chrin, “Integrating Control Systems to BeBiynamics Applications with CORBA", PAC'03,
Portland, USA, p. 291.

[5] T. Schilcheret al,, “Commissioning and Operation of the SLS Fast Orbit Feekib&PAC’04, Lucerne,
Switzerland, p. 2523.

[6] M. Boge, B. Keil, A. Ludeke, T. Schilcher, “User Opei@t and Upgrades of The Fast Orbit Feedback at
the SLS”, PAC’05, Knoxville, USA.

[7] MICO, http://www.mico.org/
[8] OMG (CORBA), http://www.omg.org/
[9] CDEV, http://www.jlab.org/cdev/

[10] S. Huntet al, “The Control and Data Acquisition System of the Swiss Li§uurce”, ICALEPCS’99,
Trieste, Italy, p. 615.

[11] D. Luckham, “The Power of Events”, Pub: Addison-Wes2§02.

