10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, TU1.4-50 (2005)

MODEL DRIVEN ARCHITECTURE, CONTROL SYSTEMS AND
ECLIPSE

A. Vodovnik', K. Zagat
Cosylab, Ljubljana, Sovenia

ABSTRACT

In the modern world, the increasing complexity ohtol systems is required to meet up with
demands for more and more complex instrumentatimmntiques. This kind of equipment often
consists of many components that require contliimd monitoring. Not only that, but it also
requires that the control system is distributeghethelable, fault-free and yet also maintainablergec
and manageable.

For the control system architects and developésspitesents a formidable task alleviated in part by
using a Model Driven Architecture (MDA) approachhi§ is a technique employed by software
engineers to firstly model the essence of the obrdystem and only then focus on further
development. As opposed to non-MDA approachesnibdel is not merely a form of documentation
for the control system but rather a central artif®y using tools such as program generators or
Computer Aided Software Engineering (CASE) appia#, other elements of the control system are
generated — such as the source code, documendaiibsoftware references.

This article focuses on outlining the current etiolu of such a development approach and the tools
aiding it. It also focuses on the use of a wideeagropen-source IDE Eclipse [4] to combine the MDA
approach with standard development tools.

Based on previous work by Cosylab in the fieldConhtrol System Modeling Language (CSML)
and XML program generation, a prototype plug-irusoh for the Eclipse IDE is also presented in this
article. The prototype presented is likely to beecanpart of the Control System Office Suite which
we are currently developing.

INTRODUCTION

Today, one of the key standards for Model Drivervéd@pment is theModel Driven Architecture
(MDA) [1] conceived by the Object Management GreugOMG) vision of a model based
development. The approach suggests that abstradelsjowhich are platform independent, are
transformed in a systematic way to generate depleyalatform-specific implementations.

These transformations offer a materialization oflembions of design decisions an architect is
required to make in order to satisfy requiremerfitthe application being developed. The goal of this
article is to show that the same approach can pkedpwhen developing control systems and doing
so by using tools either already present on the&kabdor in the open-source community) or tools that
are not too complex to develop.

MODEL DRIVEN ARCHITECTURE

Introduction to MDA

In today’s business, IT is said [9] to be best @&nterprise when serving business first and
technology second. However, this is hard to achwelven the most powerful tools feature exclusively
on technology aspects. MDA bridges the gap betwierbusiness modeling and the interfaces used
by enterprises all over the world.

The important question arising with this topic isiywis modeling really important? For one, it
allows the developed application, be it an entegpsiolution for financial planning and cost modglin
distributed telecommunications signaling tracingaontrol system for the most complex accelerators
and other large experimental devices, to be easdiyitained, yet scalable and secure. It also allesi
the programmer of the formidable task of havingdgelop the application with all the components of
the system already in mind with no way to analymai first. Models can represent the applications
strengths and weaknesses before the applicatieveis written — saving the developer’s effort. They
can represent an object (e.g. a device) at an abkdreel and in a platform independent way.

10th ICALEPCS 2005; A. Vodovnik, K. Zagar et al. : Model Driven Architecture Control Systems and Eclipse 20f6

The MDA requires that one definitive PIM, or Platfoindependent model, be created first when
developing an application. From this model, usirgtfprm specific mappings, generators and
predefined patterns and templates, a platform 8pewiodel (PSM) is generated — for example as
general as Java, .J2EE and.NET or as specific BRPHDS Asyn driver as in the case of this article

Because MDA development focuses primarily on thecfionality and behavior of distributed,
complex applications, the architect, when desigriiveg PIM, does not need to shift his attention to
idiosyncrasies of the technology platform on whiice application will be implemented. This in fact,
is the task of the developer that has a very gootdrstating and overall knowledge of the platfoen h
is implementing with.

After the creation of models and study of the asdture, the software architect can make
modifications related to any part of the applicatidéf the application were already written and a
crucial flaw would emerge (e.g. a performance issuaror handling) it could take a while to redefi
the architecture and rewrite the impacted classetsrn wasting effort of both the architect ane th
developer. Using the MDA however, the architectldaimply modify the PIM and regenerate the
application with no other effort from the developer

Using the PSM, another generator transforms theemodro artifacts — the documentation,
implementations, automatic tests (JUnit), desigeudeents, APl documentation ...

UML, MOF and their role in the approach

UML is often thought of as being the crucial paftMDA. This is because of its visualization
capabilities — all diagrams, abstract models, wéreliM or PSM, may be drawn with it. It is common
to define models using this language. In realityéeer, the most important part of the MDA is the
Meta Object Facility. It allows for UML structurand behavior models to be transmitted via XMl
(XML Metadata Interchange) to any MOF-compliantasipory from where they can be shared with
others. According to OMG’s specification of the MO central theme is to provide extensibility.
Because of its layered metadata model, it allows&wv kinds to be easily added. Figure 1 shows an
example of the four-layered model. The first layiee meta-metamodel is the top most layer. It @sfin
abstract items such as the MetaModel, MetaClassaMibute. The next level is the meta-model.
This model serves as the basis for models definethieamodel level. Note that, although in the
example, the model of “Devices” is chosen, the rmetael could just as easily be used to describe,
for example a library of articles, or a stock exuypa The last layer, the fourth layer or the infation
layer, is an actual representation of the abstraxtel defined in the third layer.

Hard-wired model | Meta-metamodel |
MetahModel(s Entriess,
MetaClass(=Entrya,

[MetaAttribute(snames, Stringl], | Metamodel |

[MetaAttribute(sfields«, List<s Fiekdu=)])
MetaClass(»Fields, ...}
Entries{zDevices,
[Field{»Name«=, String) | Madel |
Figld{»Port«, String)])

Device(»PowerSupplys, »ADDR._1+) | Information |

Figure 1 MOF multi layered presentation

Platform specific Model

As the platform specific model is generated from EHM it simply reduces the abstractness of the
PIM. It becomes more specific to the platform, ¢t i simple. Imagine a device with a property
“name”. To generate a PSM, one must decide to wpliatiorm it will be bound. If the choice is made

10th ICALEPCS 2005; A. Vodovnik, K. Zagar et al. : Model Driven Architecture Control Systems and Eclipse 30f6

to implement this in C#, the PSM would have to ipooate another private field (private string
fName for example) and a public property Name.

Device Device Device
T -fName : string Lname : String
= +Name : string +getNamef) : String
+setMame() ; String

FiM C# PSM JAA PSM

Figure 2 UML representation of the PIM and PSM modés related to the example.

private string fNane; private String nane;
public string Nanme { public String getName() {
get { return fNane;
return f Nane; }
}
set { public void setNanme(String value) {
f Name = val ue; f Name = val ue;
} }
}
Platform specific implementation for C# Platforrmesgiic implementation for Java

The examples show that, although the PIM and PSMelated, they are not the same. Because of
this, keeping them synchronized is also a formiglaatk. Many companies opt for skipping either the
PIM or the PSM. Standard practice however, shoasatrrently, the developers are focuses more on
PSM while completely ignoring the PIM.

ECLIPSE

Introduction to Eclipse

Eclipse is an open source Java IDE [4] that is lyideed. For example, at Cosylab we have been
using Eclipse as our primary development tool sitfoe year 2002. Because of its widespread
adoption, more and more Eclipse plug-ins are bdagloped that allow the users to accomplish more
tasks in one environment. Because Eclipse focusegraviding an extensible framework, one can
already see hundreds of tools emerging that sparrahge from business intelligence, modeling,
graphical editing and similar...

Support for MDA

As more and more users realize the importancetendote MDA will play in software development
in the future, more tools are beginning to emekg®. Eclipse, no open source, free tool is currently
fully implemented that would support MDA as a whblg there are several projects emerging which
are beginning to show that this might some daydbéeaed. These include The Eclipse Model Driven
Development Integration tool [5] or the Eclipse @etive Model Transformer [6]. Both of these are
still in an early stage of development but theelatilready has some results available for download.
There are however, some corporate solutions, famgie the IBM Rational XDE that have a fairly
good support for MDA.

Eclipse however, has quite a good support for UME]dased on the Eclipse Modeling Framework
model [8]. This model will also serve as the bésiour prototype solution.

MDA SUPPORT FOR ASYN DRIVER

Introduction to the problem

One of the common problems with new devices iddbk of drivers for them. Implementing them
requires extensive knowledge of the device, itscifipation and is a tedious task. It frequently
involves writing hundreds of repetitive lines ofdeo This article focuses on illustrating the praoble
with an example of writing EPICS asyn drivers.

10th ICALEPCS 2005; A. Vodovnik, K. Zagar et al. : Model Driven Architecture Control Systems and Eclipse 40f 6

1564 | static struct gpibhCmwd gpibCrds[] = 4

1565 /% Parawm 0O OFF */

1566 {&DSET_BO, GFIBCVTIO, IB O LOW,0,0,40,40,convertPSControl,0,0,0,0, EOSNL}E,
1567 AF Parsm 1 CN#/

1565 {&DSET_BO, GFIBCYTIO, IE Q LOW,0,0,40,40,convertPSControl,0,0,0,0, EOSNL},
1569 /% Parsm 2 -reset®/

1570 {&DSET BO,GPIBCYTIO, IE O LOW,0,0,40,40,convertPSControl,0,0,0,0,E08NL,
1571 /% Param 3 - local®/

1572 {&DSET BO,GPIBCYTIO, IE O LOW,0,0,40,40,convertPSControl,0,0,0,0,E08NL},
1573 /% Param 4 - remote®/

1574 {&DSET_BO,GPIBCYTIO, IE O LOW,0,0,40,40,convertPSControl,0,0,0,0,E0SNL},
1595 4% Param 5 — lock in remote ¥/

1576 {&D5SET EOQ,GPIBCVTIO, IE Q LOW,0.0,40,40,convertP3control,0,0,0,0,EQ0SNLY,
1577 /% Param & - =switch polarity *7F

1575 {&D3ET EQ,GPIBCNTIO, IE Q LOW,0.0,40,40,convertP3control,0,0,0,0,EO0SNLY,

Figure 3 Asyn driver source code; command definitios.

fii-

A59L case 133:{ /fmonitor set current in ppm %7

360 stropyimessage, "DA 0NE™)

3ol link=prec-r>ai.inp.wvalue.gpibio.link;

362 add=prec-ral.inp.value.gpibio.addr;

363 hreak:

3641 - ¥

365 case 134:{ /*mwonitor output current in ppm (4D 0) %/
366 stropyimessage, "AD 0hE™)

367 link=prec-rai.inp.value.gpibio.link;

368 add=prec->ai.inp.value.gpibio.addr;

A69 break:|

370 - i

371 case 135:4 /*monitor oucput current in ppm (AD 8) %/
& stropvimessage, "AD Shr™)

373 link=prec-rai.inp.value.gpibio.link;

Figure 4 Case sentences.

Figure 3 shows the sample source code for an asyerdreated for a power supply device. The
code is almost the same in every line. Howevels linked to another batch of code, located by a
pointer to a function convertPSControl. In thisdtion a number of case sentences exist, which ean b
observed in Figure 4. For each of the above dafimst of parameters in the struct, a case sentence
must be present. Maintaining such code, with lin&ksed on indices is hard and time consuming.

Proposed solution

The proposed solution presented in this articléoismodel the device in an abstract manner.
Through the help of the MDA Support for Asyn Drivtee article shows that it is possible to derive an
EPICS Asyn driver from a PIM model. Because thenpriy development tool at Cosylab is Eclipse, it
was also a goal of the implementer to use Eclii® &nd as much of the available tools and
frameworks. A good tool for this is the EMF, thdigse Modeling Framework. The Eclipse Modeling
Framework already offers three major packages alfmi this prototype:

1. The Core EMF
This includes the core support for describing meaeld provides runtime abilities for change
notification, persistence etc.

2. The EMF.Edit package
This package provides generic, reusable toolsditing the description of models and a generic
set of commands to ease the development of eddotie models described with the EMF.

3. The EMF.Codegen package

10th ICALEPCS 2005; A. Vodovnik, K. Zagar et al. : Model Driven Architecture Control Systems and Eclipse 50f 6

This package contains all the facilities neededdnerate the code for the editor of the EMF
model. With this editor, the driver developers wilbdel the device and, as an end result, see the
driver and documentation “pop out”.

By introducing a well-planned model into the EMFRrfrework, one can generate the required
editors to allow developers of drivers to visualsign the code. A part of the MDA Support for Asyn
Driver is also an extension to the generated eétoincluding some support for code generatiore Th
intention is to demonstrate that this type of ieglossible and test if further development isifdas

The architecture

Because it is not the intention of this articleftother complicate the development of drivers but
rather to simplify them, the focus will be to kesgpieverything as simple as possible, and, hopefully
more usable.

Figure 5 shows the model structure proposed ferhdtotype. A general overview shows that it is
composed of both PIM and PSM specific for Asyn érss The architecture proposed here is
positioned in the meta-model layer of the MOF. Efi@re, any kind of device can be modeled without
changing this model. Each device, for example auwac pump controller is represented with an
AsynDeviceSupport which extends the Device from Bi®. Any such device can contain any
number of Commands (extended by AsynCommand) amgepties, whilst commands themselves can
contain any number of parameters. A property camaio one or no command for getting and one or
no command for its setting.

CONCLUSION

It is the opinion of the author that MDA is the wdgvelopment of control systems should take.
Based on the prototype solution, choosing an agproffers more advantages than disadvantages. It
offers an improvement in understanding the codet-only at development time but also later in the
development process, in particular during mainteaaBy using as many available tools, such as the
EMF and MDDi from the Eclipse Foundation, and egliag them to accommodate for different
approaches required with building of control systewe were able to show, that a tool allowing
transformations from abstract models of devicexdacrete implementation of EPICS drivers is
possible. Although the solution presented in threnfof the MDA Support for Asyn Driver is not fully
implemented, it will be developed and researchetthéu.

10th ICALEPCS 2005; A. Vodovnik, K. Zagar et al. : Model Driven Architecture Control Systems and Eclipse
1
1 Devica DataType
e + 11212 g
= 1 2
gel
Property > Command Parametar
‘+trame q + name +name
+Hype - DataType sel +returnyalie ; DataType '.Tﬂype - DataType
1 *
LN
PIn moded
AsynCommand wenumerations
AsynDevicaSupport — ASnCHd Ty
HileName : Siring +reguestFormat | String
it 'S:ltlng +responseFomat @ String +EPIBREAD
- copyright : String 4 pricrity © AsynPriority =GPIBWRITE
' additionalComments : String Fragusslangth Lt *GP!ECUTK}
' +responselength ;inl =GPIBCMD
+reguestCode | Siring +GPIBACMD
- +responseCode | Sting FEPIBSOFT
+oommandType : AsynCmdType +GPIBREADW
+deviceSupportEntryTable - String +GPIBEFASTO
+EPIBEFASTI
1 +GPIBEFASTIVW
HEFIBIFC
AuxilaryFunction agnumerations =GRIBREM
Foode | Sinng AsynPriority *GF‘!EDCL
+name : Strirg +1B_0_HIGH SPELLY
LIB O MEDIUM
B O LOW +HEFIBGTL
e +HEFIBSROHANDLER

FEM Model for Asyn Driver

6 of 6

Figure 5 Meta-model of control system PIM (top) anda PSM (bottom), specific for EPICS asyn

drivers.

REFERENCES

[1] Object Management Group — Model Driven Architee, http://www.omg.org/mda/
[2] Dan Mathesonet al, “Managed Evolution of a Model Driven Developmepproach to
Software-based SolutiohSOOPS.A & GPCE Workshop 2004.

[3] K. Zagar et al., “The Control System Modelingriguage”, ICALEPCS’2001, San Jose, USA,

October 2001.
[4] Eclipse IDE, www.eclipse.org

[5] Eclipse MDDi, http://www.eclipse.org/mddi/
[6] Eclipse GMT, http://www.eclipse.org/gmt/
[7] Eclipse UML2, http://www.eclipse.org/umi2/
[8] Eclipse EMF, http://www.eclipse.org/emf/

[9] Jon Siegel, “Making the case: OMG’s Model Dmiv&rchitecture”, SD Times, October 15, 2004

[10] OMG MOF Specifications, http://www.omg.org/dgformal/02-04-03.pdf

