
THE DIRECTORY SERVICE FOR THE CERN ACCELERATOR

CONTROL APPLICATION PROGRAMS

J. Cuperus, M. Peryt, E. Roux, J. Schinzel

CERN, Geneva, Switzerland

ABSTRACT

The controls infrastructure of CERN’s accelerator complex is converging towards a unified

architecture. High level control room application programs are written in Java and they interact with

the accelerator environment through several interface libraries. One of these libraries is the

Directory Service. This library provides information about the accelerator equipment through a

number of Java classes that get their data from a relational Configuration Database via JDBC.

On a higher level, application programs are called from a generic console manager that can be

configured for an operational environment through the Directory Service, which provides

information about menu trees of software programs to be called plus the attributes and parameters

of these programs.

INTRODUCTION

Application ProgramsApplication Programs Other Interface LibrariesOther Interface Libraries

Directory Service

Device Access libraryDevice Access library

MiddlewareMiddleware

Device Access Modules in FECsDevice Access Modules in FECs

Controlled Devices in 10 AcceleratorsControlled Devices in 10 Accelerators

Configuration DatabaseConfiguration Database

Generic ComponentsGeneric Components

Application ProgramsApplication Programs Other Interface LibrariesOther Interface Libraries

Directory Service

Device Access libraryDevice Access library

MiddlewareMiddleware

Device Access Modules in FECsDevice Access Modules in FECs

Controlled Devices in 10 AcceleratorsControlled Devices in 10 Accelerators

Configuration DatabaseConfiguration Database

Generic ComponentsGeneric Components

Fig.1: Block diagram of the CERN Accelerator Control System

Fig.1 shows the block diagram of the control system. The Directory Service library, written in Java,

gets its data from the Configuration Database [1] via JDBC (Java Database Connectivity) and

delivers them, in a suitable form, to the Java application programs. This provides information about

devices, and the way to control them, in 10 accelerators: a proton linac, an heavy-ion linac, the PSB

booster, the 30 Gev PS accelerator, the 450GeV SPS accelerator and the 2x7TeV Large Hadron

Collider (LHC) storage rings, plus the interconnecting beam lines, an Antiproton Decelerator (AD),

an ion accumulator ring (LEIR), the isotope facility (ISOLDE), and the new electron linac test

facility (CTF). Note that many subsystems, like the cryogenics for the LHC, are controlled by

industrial electronics, with only summary control from the accelerator control system. The

application programs may access any number of other access libraries for timing, logging, alarms,

… Solid arrows indicate operational data flow. Dotted arrows indicate design-time data flow.

DEVICE ACCESS

The controlled devices are power supplies, actuators, pumps, valves, beam monitors, timings,

function generators, … They are controlled via device access modules. The accelerators up to the

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, MO4A.1-7O (2005)

PS are mainly controlled by General Modules (GM) [2]. New device access modules follow the

Front End System Access (FESA) model [3]. The SPS is mainly controlled by yet another

technology: SL-EQUIP[4]. Both GM and FESA are object-oriented with similar devices grouped in

device classes and their design is stored in the database, so that full information is available. SL-

EQUIP is not object oriented, except for some beam-monitoring modules, and most of its

parameters are not centrally available. SL-EQUIP and GM modules are destined to be re-written in

FESA but the priority is now for new design for the LHC and replacement may take many years.

The Directory Service provides the available information in a uniform way, independent of the

underlying access technology.

Summary information about devices, and how to access them, is available in records of the database

table DEVICES with among the important fields: devicename, computer, server, accelerator,

timing, classname, … Note also that most of the database tables, including DEVICES have a

description field, in general 80 characters long, which is important for documenting the system and

to give information to the accelerator operators. However, these fields are not essential for operation

and, unfortunately, they are not always filled in.

CONTROLDEVICE CLASS AND DEVICE SETS

All available information about a device can be obtained, directly or indirectly, through the Java

class ControlDevice, which has some 30 public methods for getting data or instances of related

Java classes. An instance of the ControlDevice class can be obtained with:

‚ ControlDevice device = ControlDevice.getControlDevice(String deviceName);

An array of these devices can be obtained with:

‚ ControlDevice[] devices = ControlDevice.getControldDevices(String query, String order);

Where query is any SQL query statement against the columns of table DEVICES, like: query = ”

accelerator=’PSB’ and classname=’POW’ “; and order is a comma-separated list of table columns

according to which you want the result ordered.

A more complicated set of devices is the working set, which is an array of array of devices (see

Fig.2).

WorkingSetWorkingSet DeviceGroupDeviceGroup ControlDeviceControlDevice

Device Relations

WorkingSetWorkingSet DeviceGroupDeviceGroup ControlDeviceControlDevice

Device Relations

Fig.2: Composition of working sets and relations between devices.

The working set itself can be obtained with:

‚ WorkingSet wset = WorkingSet.getWorkingSetByName(String wsetName);

It is also possible to get a working set by query:

‚ WorkingSet wset = WorkingSet.getWorkingsetByQuery(String query);

For queried working sets, the devices are grouped by device class.

For each device, it is possible to get the associated devices and the relation they have to the device

(e.g. timxxx is start-trigger for powyyy …).

10th ICALEPCS 2005; J.Cuperus, M.Peryt, E.Roux, J.Schinzel et al. : The Directory Service for the CERN ... 2 of 6

DEVICE CLASSES AND PROPERTIES

ControlDevice ControlDevice

DeviceCompositePropertyDeviceCompositeProperty

DeviceAtomicPropertyDeviceAtomicProperty

DevicePropertyDeviceProperty

ControlDeviceClass ControlDeviceClass

MetaProperty MetaProperty

1

n

1

1 1.. k

m

ControlDevice ControlDevice

DeviceCompositePropertyDeviceCompositeProperty

DeviceAtomicPropertyDeviceAtomicProperty

DevicePropertyDeviceProperty

ControlDeviceClass ControlDeviceClass

MetaProperty MetaProperty

1

n

1

1 1.. k

m

Fig.3: Properties for a device.

Our devices belong to a GM or FESA device class or else can be grouped into a number of virtual

device classes. Device classes can have properties for getting information about the devices from

the device access packages in the FECs. The association between device classes and properties can

be ambiguous for 4 reasons:

1. Our system evolves and classes can have versions with different properties installed

in different parts of the system.

2. Our equipment diversity is very large and similar devices, but with slightly

different properties and implementations, may be grouped in the same device class.

3. Properties can have attributes (like minval and maxval) that may be associated with

the device instance rather than with the device class.

4. Virtual device classes have no direct information about the ‘properties’ of their

devices (but they can have MetaProperty information - see further).

For these reasons, device properties are associated with ControlDevice rather than with

ControlDeviceClass, at least from the point of view of the user of the Directory Service.

Generic components and programs must be able to work with devices and classes they

know nothing about. So we need information in very general terms. This information can

be obtained from the Java class MetaProper ty.

META PROPERTIES

Each ControlDeviceClass can be associated with a number of MetaProperty instances. A

metaproperty indicates an important function of the class in general terms, understandable

by generic programs that have no a priory knowledge about the ControlDeviceClass and its

properties. What the nature of the metaproperty data is can best be illustrated by showing a

database input form used for creating and updating the metadata (fig. 4).

The example is for MetaProperty ‘STAT-MC’ which is recognized by generic programs

and components as meaning: main status control. The device can be controlled through

DeviceAtomicProperty CCSACT and the effective status of the equipment can be obtained

with STAQ.

For the status word, the meaning of the bits can be described. For a value metaproperty (with a

name like ‘VAL-MC’ or ‘VAL-A’, …) the Units, Minval, Maxval are more likely to be filled in. In

many cases, the data filled in can be either a literal value, a *reference to a GM or FESA variable

which the directory service will resolve automatically, or a #reference to a DeviceAtomicProperty

that the application program has to call to obtain the value.

10th ICALEPCS 2005; J.Cuperus, M.Peryt, E.Roux, J.Schinzel et al. : The Directory Service for the CERN ... 3 of 6

Fig.4: Input Form for metadata.

Note the use of treatment codes (Trm) for distinguishing between different types of similar

equipment. This is preferred over subclassing which would get out of hand due to our large

variability of equipment. These treatment codes are for internal use only and are not seen explicitly

by the users of the Directory Service.

For GM and FESA equipment, these MetaProperty attributes complement the information available

from the DeviceAtomicProperty attributes. For the SL-EQUIP implementation, it is the only

potential property information available.

CONSOLE MENUS

OpConfig OpConfig

OpConfigProcess OpConfigProcess WorkingSet WorkingSet

JMenuItemJMenuItem

ConsMenuItemConsMenuItem ProgDefProgDef

TasksMenu Tree
1 0 .. 1

OpConfig OpConfig

OpConfigProcess OpConfigProcess WorkingSet WorkingSet

JMenuItemJMenuItem

ConsMenuItemConsMenuItem ProgDefProgDef

TasksMenu Tree
1 0 .. 1

Fig.5: Console Menu and Working Set Classes.

10th ICALEPCS 2005; J.Cuperus, M.Peryt, E.Roux, J.Schinzel et al. : The Directory Service for the CERN ... 4 of 6

An operational configuration, or OpConfig is mainly a label for an environment in which to work,

like CPSOP which denotes operation of the CPS accelerator. An OpConfigProcess is a part of this

operation, like particle ejection.

For each OpConfig, a number menu trees are available from the directory service (Fig.5). These

menu trees can be added directly to the menu bar of the Java console. The leaves of these menu

trees call application programs with defined arguments. Some of these application programs can be

Tasks, which are ordered lists of application programs, to be executed sequentially.

The first menu tree is dedicated to calling hand-made working sets with a generic working set

display program and control. This program provides an overview of the status of the devices in the

working set and allows manual control of the devices.

GENERIC COMPONENTS AND PROGRAMS

A number of generic programs and components (Java Beans) allow display and control of devices

with information about the devices provided by the directory service (see Fig.6). The set of devices

to be worked on is provided by a named or queried working set. Then, for each device, the

ControlDeviceClass can be obtained with its list of MetaProperty, which provides the

DeviceAtomicProperty instances for monitoring and controlling the devices.

Fig.6: At left, an example of a generic working set display program that displays the status and

values of the devices in a small working set for injection into LEIR. Knobs for controlling

individual devices can be created. At right, a container with such generic knob components.

 Support is also given for interactive browsers where the device structure can be explored and

detailed information can be obtained from the devices. This is useful for trouble shooting and for

familiarizing the operators with the accelerators.

Up to now, we really only talked about controlling electronic extensions of devices, sitting in a rack

somewhere. It would be useful to relate these extensions with the accelerator hardware, like

magnets, RF cavities, and beam monitors. This would make it possible to make a generic Synoptic

program that could display data about any set of devices related to their position in the accelerators.

This information about the relations between electronic and accelerator devices exists partially in

automatic beam steering programs (ABS) and it would be very useful to extend this information and

make it generally available through the Directory Service.

10th ICALEPCS 2005; J.Cuperus, M.Peryt, E.Roux, J.Schinzel et al. : The Directory Service for the CERN ... 5 of 6

INITIALISATION PARAMETERS

Any status or value control parameter for a device can be stored as ‘REFERENCE’. This includes

arrays for function generators. A particularity of our control system is that it allows to define up to

64 virtual machines (VM) which configure our system of interlocking accelerators for a particular

operation like injecting protons in the LHC. Most of our accelerators can be reconfigured, on a

pulse-to pulse basis from one VM to another. There is a REFERENCE set for all devices for each

VM. Generic operations like set-in-reference or get-from-reference can be done for individual

devices or for any set of devices.

Particular sets of values can be stored in named ARCHIVES which contain a date, a comment, and

the settings for a named working set and a named VM. These archives can be used for setting up the

accelerators for a particular operation.

The directory service provides the interfaces for storing and retrieving references and archives. For

the moment it is only used for GM devices but it could easily be used for all devices. The

mechanism should however not be used for storing the functions for controlling the beam in storage

rings, for which more secure mechanisms are available.

DOCUMENTATION

The public Java Classes and Methods of the Directory Service can be consulted on the Web through

documentation generated with the JavaDoc facility. This is enhanced by providing a detailed

description of each class, method, and method argument. When writing applications with a Java

design tool, this documentation can be consulted on-line as part of the design process.

CONCLUSIONS

Some of the accelerator equipment is over 40 years old and some is brand new, with a great

diversity of equipment types and control technologies. The Directory Service presents this diversity

in a uniform way to the application programs so that generic programs and software components

can be written that can handle many control and display tasks, based on the configuration data.

REFERENCES

[1] The Configuration Database for the CERN Accelerator Control System. J.Cuperus, R.Billen,

M.Lelaizant, Icalepcs2003, Geongeoeng, South Korea.

[2] Process Equipment Data Organization in CERN PS Controls. L.Casalegno, J.Cuperus,

CH.Sicard, Nuclear Instruments and Methods in Physics Research A293 (1990), pp412-415.

[3] Equipment Software Modeling for Accelerator Controls. M.Arruat, S.Jackson, J-L.Nougaret, M.

Peryt, Icalepcs2005, Geneve, Switzerland.

[4] Accessing equipment in the SPS-LEP controls infrastructure: the SL-EQUIP package.

P.Charrue, CERN-SL-Tech-Note-93-086-CO.

10th ICALEPCS 2005; J.Cuperus, M.Peryt, E.Roux, J.Schinzel et al. : The Directory Service for the CERN ... 6 of 6

