
The ALMA Computing Project – Update and Management Approach

B.E. Glendenning1, G. Raffi2

1National Radio Astronomy Observatory, Socorro, New Mexico, USA
2European Southern Observatory, Garching, Germany

ABSTRACT
The Atacama Large Millimeter Array (ALMA) is a project to build a radio interferometric telescope
containing a large number of antennas (nominally 64) at a high site in Chile operating in the mm and
sub-mm spectral region. With the addition of a Japan in the last year, ALMA is now a global
partnership with participation by institutes in Asia, Europe, and North America. The scope of the
ALMA Software includes all aspects: observing script creation through GUIs, dynamic scheduling
depending on weather and instrumental parameters, instrument control (including the correlator
device, capable of producing data at more than 1 GB/s), data handling and formatting, data archiving
and retrieval, and automatic and manual data processing systems. The scope has recently been
increased to support telescope operations (e.g., referee support). This ambitious scope is being
implemented by a very distributed team, with approximately 60 members at institutes in 10
countries. This paper will describe some technical highlights of the software system, some technical
lessons learned after the initial deployments to support initial antenna prototype tests, and will
describe some of the management approaches used to keep the software effort coherent across the
entire project.

INTRODUCTION
ALMA is a large radio interferometer presently under construction at a high site in Chile. It is a
global partnership of institutes from four continents. It is funded at the level of ~$750M (2000). The
project was started as an equal partnership between Europe and North American institutes, and has
more recently been joined by Japan. The funding organizations are:

‚ The US National Science Foundation (NSF)

‚ The National Research Council of Canada (NRC)

‚ The European Southern Observatory (ESO)

‚ Spain (MCYT-IGN)

‚ The National Astronomy Observatory of Japan (NAOJ)

ALMA is being built in cooperation with the Republic of Chile, which offers an exceptionally dry
and transparent site (better than the South Pole for a substantial fraction of the time) in the
Chajnantor area of the Atacama Desert. The ALMA project is currently undergoing a rebaselining
process in reaction to cost growth.

ALMA consists of a set of 12m antennas (each pair an interferometer) capable of receiving in the
frequency range 37 GHz to nearly 1 THz. While observing the antennas are on fixed pads, however
they can be picked up and transported by large wheeled vehicles. Antenna separations can range up
to nearly 14km, resulting in spatial resolutions as fine as 10 milli-arcseconds. NAOJ is providing
four antennas optimized to provide total-power (i.e., autocorrelation) data as well as a compact array
of 7m antennas to provide higher sensitivity to broad, low-surface brightness features (each
interferometer is sensitive to angular size scales inversely proportional to their separation on the
ground). There are a number of important scientific reasons to build ALMA, it perhaps suffices for
this paper to note that most of the photons in the universe are emitted in the ALMA observing range.

The first production antenna will arrive on-site in late 2006, with an early science period starting in
2009, and the end of the Construction project at the end of 2011. As interim operations starts

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, MO2.2-1I (2005)

ramping up in 2009, our construction staff will start ramping down. We assume in fact that the
operations staff will largely consist of developers who transfer from the construction staff.

While the outcome is not yet certain, it is likely that the number of antennas in the main array will
decline to 50 (from 64). The project is not recommending a decrease in the software budget, but until
the process is finalized this cannot be stated with certainty.

SOFTWARE SCOPE
The fundamental data product of ALMA instrumentation is an irregularly sampled Fourier transform
(with each pair of antennas at an instant returning a point (itself a multi-polarization spectrum) in
Fourier space) of a portion of the sky, with various atmospheric and instrumental corruptions
included. The desired output is a calibrated brightness distribution with two spatial axes, one spectral
axis, and one, two, or four polarizations (usually one (Stokes I) or four (Stokes IQUV)).

It is the role of the ALMA Computing system to provide tools to support:

‚ The preparation and subsequent handling (e.g., refereeing) of observing proposals.

‚ To express the desired observing program for successful proposals, either in
straightforward scientific parameters (target list, sensitivity, size scale, spectral and
polarization parameters) or in very technical parameters for experts or for unusual projects.

‚ To dynamically schedule the observations so that the most challenging projects are
observed with the best weather (relevant even at the outstanding Chilean site).

‚ To control the ALMA equipment (antennas, receivers, cryogenics, local oscillators, digital
correlator, …) to carry out the observing program. Almost all equipment to be controlled is
custom.

‚ To capture the output data from the digital correlator (at up to 1GB/s), apply certain online
calibrations that have to be applied on a sub-integration timescale, time-average and
reformat it and associate it with various ancillary data.

‚ To perform various online calibrations (e.g., to calibrate the antenna pointing on a ~10
minute interval).

‚ To provide operational controls, over-rides, alarms, health monitor, overview and detailed
control panels, and quick-look displays of the raw and partially processed data.

‚ To archive all data (raw, observatory, instrumental) at a data rate of up to 60MB/s.
(Average data rate in 2011 is specified to be 6MB/s = 180TB/y).

‚ To provide a processing “pipeline” to flag, calibrate, and image the raw data into reference
images.

‚ To provide the Archival research access to the data, including through various “Virtual
Observatory” initiatives which are developing cross-wavelength data access protocols and
standards to promote data mining across observatory.

‚ To provide a desktop installable data reduction package for programs in which the pipeline
images are not sufficient (for example, because data is observed in a non-standard mode).

‚ To provide support for various operational functions (e.g., data distribution to PI’s).

In addition to this functional scope, we have some additional funded activities which are not of direct
interest to users, but are nevertheless required for the software development to proceed.

‚ Management.

‚ ALMA Common Software.

‚ High-level Analysis and design.

‚ Integration, test, and support.

‚ Scientific requirements support (testing, maintenance, expertise).

‚ Software Engineering.

10th ICALEPCS 2005; B.E. Glendenning, G. Raffi et al. : The ALMA Computing Project – Update and Managem... 2 of 6

Outside of our scope are pure business (MIS) functions, system and network administration,
embedded programming “inside” devices (microprocessor, FPGA), and algorithm development.

RESOURCES AND ORGANIZATION
The worldwide construction budget for the ALMA Computing Integrated Product Team (IPT) is
more than $45M (2000). This budget is dominated by personnel costs, including overhead and travel.
It also includes about $6M for necessary operational equipment (computers, communications
switches) and software licenses. Including in-kind personnel contributions it will be an over
400FTE-y effort. At present there are about 65FTE on staff distributed over 14 sites and 9 countries.

The IPT is jointly managed by the two authors of this paper, and K. Tatematsu (NAOJ). The IPT
management jointly has complete technical authority over the project; in case of disagreement one of
them (at present B.E. Glendenning, NRAO) is designated as the leader and is authorized to take
technical decisions for the entire IPT. In practice we are able to arrive at decisions with consensus.
Each manager is individually responsible for financial, contractual, and personnel issues in his own
region.

At present the distribution of effort in the various areas is as follows:

Management, Process, Common Software

‚ Management 3 (excluding administrative support)
‚ Common Software (ACS) 8.6
‚ High level analysis, design 1.6
‚ Integration, test, support 4.8
‚ Scientific Software Requirements 2.9 (budgeted staff only, not counting in-kind contributions

from committee members. Will be augmented in Japan).

‚ Software Engineering 2.5

Pre-observing

‚ Observing preparation/support 3.5

Observing

‚ ACA control 5.2

‚ Control software 7.7

‚ Correlator software 4

‚ Executive software 1

‚ Dynamic scheduling 1.1

‚ Telescope (online) calibration 2.9

Post-observing

‚ Archive 5.8 (really pre and post observing and operations!)

‚ Offline (AIPS++, simulation, data formats) 5.6 (ALMA construction budget)

‚ Pipeline (including quick look) 3.8 (budgeted, not counting in kind contributions from MPIfR,
Paris)

Operations

‚ Observatory operations support software 0.5 (design phase)

MANAGEMENT APPROACH
The ALMA project has certain realities that must be accommodated in the management of its
software development.

‚ It has an ambitious set of requirements.

‚ While the budget and team are very large for astronomy, it has been remarked (by our review
panels, amongst others), they are nevertheless lean for the task (point 1).

10th ICALEPCS 2005; B.E. Glendenning, G. Raffi et al. : The ALMA Computing Project – Update and Managem... 3 of 6

‚ We have a team with very heterogeneous backgrounds (some with tremendous experience at
observatories, others with none; some with considerable formal training, others with little).
We are fortunate that the challenge of the project has attracted an exceptionally able
development staff.

‚ We have a very distributed team.

‚ We have formal reporting requirements that tend to run counter to modern best practices
(“agile”).

Taking all of this, as well as “usual” software management issues, we have developed the following
approach to managing the ALMA Software development.

1. Requirements. When the ALMA project was formed, while there was a rich heritage of
science requirements, the requirements on the software system were much less developed.
However it was understood certain features, like dynamic scheduling of observations, would
be required of ALMA. We solved this problem by forming a committee or prominent mm
band observers and staff with considerable experience with software systems at astronomical
Observatories – the ALMA Science Software Requirements (SSR) committee. While their
mandate was fundamentally to write requirements in areas of interest to potential ALMA
Observers, it did include some operational requirements. The first product (2002) of this
committee was a 160 page formal document containing numbered requirements and some
use cases. While these requirements were enough to guide the overall outline of the system,
they were not fine enough to track overall progress – most items would be in a “partially
implemented” state for the lifetime of the development. Thus we have instituted a system in
which the requirements needed for the next ~1 year of development are made more granular,
by which we mean that they should become fine enough to be clearly delineated in the
development and testing, but should not increase the scope of the subsystem. In addition to
these Science requirements, a 60 page formal document on data processing requirements
was produced also in 2002. This document is already granular enough to track development.
A high-level set of operations requirements has been available since mid-2004, but they are
still at a high level and need to be developed further, which is in progress.

2. Architecture. At an early planning stage of the project the work was divided into subsystems.
After this a high-level architecture was defined to fulfil two purposes: to define the major
business logic data flows between subsystems (“logical architecture”), and also to define
some principles for how the software system should be organized to satisfy the technical
constraints of the project (e.g., 200 computer system on 4 continents, 3 major languages
(Java, C++, Python)). In retrospect the definition of the subsystems should have been
deferred until after the architecture was available.

3. Common Software. An important strategy we adopted from the beginning was to require all
developers to use a common software package, ACS, described elsewhere in these
proceedings. The reason was to establish a common technical way of working in practice,
not just an in principle result that would come from written standards. Amongst other
advantages, it minimizes the support burden required of the maintenance staff who would
otherwise have to absorb development differences from the very distributed and
heterogeneous ALMA development team. ACS is basically the implementation of the ALMA
technical architecture (for example, a multi-language container/component architecture
based on CORBA) and a packaging of various services, some developed by ALMA and
some adopted from elsewhere, for example an Alarm system from CERN.

4. Oversight. We have regular “contact” meetings with the subsystems, modelled loosely on
progress meetings which would be held with an external contractor. These meetings
concentrate on planned vs. actual development of features, action item status, test status,
status of important bugs, and other issues hindering process. In addition to these meetings
aimed at technical progress, each subsystem with a scientific or operational impact has a
subsystem scientist appointed to oversee development with the view towards overall
functionality and usability. The subsystem scientist also provides scientific input into the
development process since the development team in many cases is unfamiliar with details of

10th ICALEPCS 2005; B.E. Glendenning, G. Raffi et al. : The ALMA Computing Project – Update and Managem... 4 of 6

radio astronomy. In addition, we have defined a series of reviews (one or more per year) to
review both the overall state of the system and the design and other details for the coming
year. In the case of software developed incrementally we do not consider it realistic to have a
final design review with years of development still to occur. These reviews are sometimes
internal, and sometimes external (defined by the top-level management), depending on the
current state of development. To date we have held (and passed), an Internal Design Review,
a Preliminary Design Review (PDR) (external), and three incremental Critical Design
Reviews (CDR), one external. In addition we are subject to various other reviews called by (
the project.

5. Integrations. In order to avoid the well known “integration hell” problem that would occur if
the subsystems developed in isolation (with defined interfaces) before being finally delivered
to a “big bang” integration in Chile, we have instituted a monthly integration cycle in which
all subsystems are tagged and integrated together (running automated tests, looking for
compile problems etc). To avoid the problem of interfaces between subsystems changing at
the last moment before the monthly integration, we have instituted a policy in which the
interfaces between subsystems (not within), are tagged with a two week offset to the monthly
integration.

6. Releases. We have a release every 6 months, alternating major and minor. It is intended that
the minor releases be interface compatible with the preceding major release when the project
has sufficiently matured. Releases occur on a fixed schedule (in fact the releases use the
monthly integration tag mechanism) rather than slipping the release date to maintain a fixed
scope. In a widely distributed project it would otherwise be very difficult to otherwise
synchronize delivery from a number of subsystems, and we consider it useful to have an
understood development pace to which everyone adheres. Additional functionality can
always be added via a patch if necessary.

7. Planning. We have a high-level roadmap, tied to the overall commissioning schedule, or
which functionality is required through the end of the construction project. This roadmap is
too coarse for detailed planning. For detailed planning once per year each subsystem is
requested to provide a set of features they will develop in the coming year, and this is
reviewed at the yearly incremental CDR. The expected completion date, testing method, and
estimated effort are also recorded. This then naturally also forms the basis of evaluating the
progress of the subsystem. Features are usually just a granular requirement for a subsystem,
but also include a technical items required by the system but not visible to end users. The
planned features, their status, and their relationship with the high level requirements are tied
together in a commercial database (the Telelogic DOORS application).

8. Testing. Subsystems provide unit tests which are automatically executed every night.
Failures are automatically distributed to individuals responsible for a particular module. For
subsystems with visible scientific or operational concerns external user tests (with members
solicited from the community) are arranged to test the subsystem in isolation by
representative users of that subsystem. This usually results in a written report, a
questionnaire from each tester, and an evaluation (“grade”) for each evaluated requirement.
The test is aimed at the requirements fulfilled in the previous 6-month development cycle.
The integrations result in technical tests and procedures which can be run in a regression
sense. In 2006 we will start a campaign of integrated user tests, in which the integrated
software system will be used at our 2-antenna test facility in New Mexico. We will do these
tests organized by observing mode in the order they are needed in Chile. This will result in
regression tests, commissioning scripts, and evaluation of requirements that can only be
tested in an integrated system.

9. Communications. ALMA is a very distributed project, and software development requires a
lot of discussion and collaboration. We have adopted the following approaches. Subsystems
with team members in multiple locations typically have a (typically) weekly phone meeting
(video meetings in general have not been reliable for, owing to disparities in network
bandwidth and equipment availability between sites). We have a significant travel budget,
budgeted at the level of 3 trips/developer/year. We use various electronic communications

10th ICALEPCS 2005; B.E. Glendenning, G. Raffi et al. : The ALMA Computing Project – Update and Managem... 5 of 6

tools (Yahoo messenger and Skype are popular). And for collaborative written discussions
the Wiki (TWiki version) has been enormously effective for us.

While we evolved the above system to meet our own particular needs, it is always interesting to
compare one’s own practices against those of others. Comparing the ALMA system against the 6
core practices of the Rational Unified Process (as summarized in the very nice survey of modern
agile software development practices, [1]).

1. Timeboxed iterations of 2-6 weeks. Our monthly integrations provide this.
2. Cohesive architecture, strive to reuse existing components. We have a cohesive logical and

technical architecture (ACS). ACS in turn is based on software which already exists,
although ALMA has considerably enhanced it.

3. Continuously verify quality, test early, integrate and test. In general we are putting
appropriate effort into integration and integrated tests and standalone user tests. We collect
various software quality metrics, but they are not paid sufficient notice. Our unit tests are not
sufficient for all subsystems.

4. Visual modelling before iteration. Our fundamental data models are developed in UML and
code (language bindings, XML schemas) are then automatically generated from the UML.
We do not otherwise insist on any use of a visual modelling language, which people then use
as they find appropriate for their subsystem. Many do not use them at all.

5. Manage requirements. We have expended considerable effort in this area.
6. Manage change. All software and related files (e.g., makefiles) are kept in a version control

system (CVS). Intervals in which inter-subsystem interfaces can change are prescribed. We
have a software change control board (SCCB), but it does not yet consider most changes to
the software. As the project moves closer to completion we will increasingly place items
under the control of the SCCB.

ACKNOWLEDGEMENTS
The National Radio Astronomy Observatory is a facility of the National Science Foundation operated
under cooperative agreement by Associated Universities, Inc

REFERENCES

[1] Agile and Iterative Development: A Managers Guide, Craig Larman, Addison-Wesley
Professional (2003).

10th ICALEPCS 2005; B.E. Glendenning, G. Raffi et al. : The ALMA Computing Project – Update and Managem... 6 of 6

