
KNOWLEDGE-BASED SOFTWARE MANAGEMENT*

S. Schaffner, M. Bickley, L. Clancy, K. White,
B. Bevins, JLAB Newport News, VA 23606, USA

Abstract
Management of software in a dynamic environment

such as is found at Jefferson Lab can be a daunting task.
Software development tasks are distributed over a wide
range of people with varying skill levels. The machine
configuration is constantly changing requiring upgrades
to software at both the hardware control level and the
operator control level. In order to obtain high quality
support from vendor service agreements, which is vital to
maintaining 24/7 operations, hardware and software must
be kept at industry’s current levels. This means that
periodic upgrades independent of machine configuration
changes must take place. It is often difficult to identify
and organize the information needed to guide the process
of development, upgrades and enhancements.
Dependencies between support software and applications
need to be consistently identified to prevent introducing
errors during upgrades and to allow adequate testing to be
planned and performed. Developers also need access to
information regarding compilers, makefiles and organized
distribution directories. This paper describes a system
under development at Jefferson Lab which will provide
software developers and managers this type of
information in a timely user-friendly fashion. The current
status and future plans for the system will be detailed.

Users
There are three types of people involved with the

control system software. Software managers who are
concerned with the tracking issues described above, the
software developers who must provide the information
needed for tracking, and the software users who are not
directly concerned with these issues but whose work can
be adversely impacted when the software managers and
developers do not maintain adequate control of their
software. Our software management system tries to
maintain a balance between the tracking needs of
management, the creative needs of software developers,
and the reliability needs of software users.

Knowledge Base
The knowledge base for our software management

system resides in three areas: the configuration database
(we are using Oracle), the code repository (we are using
CVS), and the file system itself. The configuration
database provides much of the information needed by
management to track critical operational software,
including the software interdependencies. The code
repository maintains a copy of the source code stored in
such a way that modifications are labeled which provides
the ability to recreate a software application from some
point in the past. Software development, testing, and
execution take place in the file system. MANAGEMENT ISSUES

Management tracking information is captured as part of
established standards and procedures that the software
developers follow as they work in the file system and as
they store modifications in the code repository. Much
effort has gone into capturing the management tracking
information in as unobtrusive and natural a way as
possible for the developers. The benefit is that the more
mundane and routine aspects of the software life cycle
process actually are made easier when well-defined
procedures are in place.

In order to ensure reliable operation of the control
system, certain pieces of information about the control
system software need to be tracked. The obvious
information, of course, is the ability to identify critical
operational software, know who owns the software, know
where the source code for the software resides, and know
where the products of the source need to be installed and
run.

Perhaps less obvious is the ability to identify and track
the software interdependencies. Correct operation of a
software application depends on interactions with
underlying support software such as the operating system,
compiled libraries, scripts, data files, and documentation.
Modifications to any of the underlying support software
on which a particular software application depends can
produce unwanted effects.

USER INTERFACE
The primary focus of our software management system

so far has been on the portion used by the software
developers. A command line interface has been developed
for a tool set that divides the system into six “managers,”
each one responsible for a different portion of the system.
The managers provide tools for software developers to
use to create and maintain the file system and code
repository parts of their application in a development area
and to install and test their software in the production
areas of the control system while at the same time
capturing and storing crucial tracking information in the
Oracle database.

Finally, the ability to reproduce exactly the state of a
piece of software from some previous point in the past
(including the state of the underlying support software at
that time) is crucial to reliable operations since any
modification to a piece of working software can introduce
unwanted effects (i.e., bugs).

*
D

Proceedings of ICALEPCS2003, Gyeongju, Korea

 This work was supported by the Department of Energy under contract
E-AC05-84ER-40150.
439

 Application Manager
An application is composed of a set of files. The files

may be used to compile an executable binary, or to run
through an interpreter or Web server. The set of files may
or may not also contain data, configuration, log, or
documentation files. For the software developer, the
Application Manager provides tools to create a directory
structure for an application and set up a module for the
application in the CVS code repository. In addition, the
Application Manager provides tools to create a release of
the application for production and to patch a release for
bug fixes or upgrades.

The Application Manager also includes tools for
developers to use to register applications that they have
chosen to develop on their own or for commercially
licensed software or shareware. While developers do not
have to use the tools provided to create and maintain
applications, they are required to use the registration tools
to ensure that the configuration database contains all
information needed about critical operational software.

Product Manager
A product of an application is simply a file that will be

used in some way either by a user, the application
itself, or by another application. Some hand-generated
files (e.g. source code files typed in with an editor)
generally do not fall under the definition of products. The
Product Manager provides tools to register these product
files. It is not necessary to register all the files that
comprise an application, only those that are critical for the
execution, installation, or support of an application. Each
registered product file is assigned a unique product id that
is used in conjunction with a location id as describe
below.

Location Manager
Locations are the places (i.e., directories) in the file

system where products are created (the source location) or
where products will be used (the destination location). As
with products, locations are registered and assigned a
unique location id. A single product may be identified
uniquely in two locations, once in the directory where it is
created using the source location id and again in the
directory where it will run using the destination location
id.

The Location Manager is used to register locations and
assign location ids. When an application is created or
registered using the Application Manager, a set of
standard directories created as part of the process are
automatically registered and assigned location ids. It is
the responsibility of the developer to register non-
standard locations that are created as part of the process
of developing an application.

Package Manager
A package defines the actions that need to take place in

order to install (or remove) the products of an application.
A package consists of an arbitrary number of items. Each
item describes what to do with a single product and

consists of the location id for the source of the product,
the location id for the destination of the product, the
product id, an optional product alias in case the product
needs to be renamed at it’s destination, and the action to
be taken with the product.

Actions include copying or linking files and directories,
executing scripts or binaries, and displaying
documentation files. Package developers are strongly
encouraged to provide documentation about the how to
use the software as part of the package.

Packages are really very simple state machines that are
stored in the database and provide the system with the
ability to perform automated software installation
procedures. The Package Manager provides tools to allow
a software developer to build and test packages.

Support Manager
Sometimes the products of one application are used by

a second application either to build the second application
or while the second application is running. This type of
application is called a support application and its products
are generally not installed into a production area but
rather installed into the source area of the application
using the support.

One of the goals of our system to is to encapsulate the
actions needed to install all support software (e.g.,
compilers, interpreters, licensed software and shareware,
and in-house developed support software) through
support packages. The Support Manager is used by a
developer to install the products of a supporting
application in the source area of the application that is
using it as well as to capture the association in the
database.

The advantages of providing support in this manner are
enormous for both developers and managers. For
managers, all dependencies for a particular operational
critical piece of software can be determined simply by
querying the database. For the developer all available
support software is easy to find and install and (if the
support package developer has followed the rules)
documented. In addition, when an application is installed
in a production area, its support automatically goes with it
including verification that the necessary support
applications are available.

Installation Manager
The major functions of the Installation Manager are to

create default installation packages, to install and build
applications in one or more production areas (using the
installation package), to manage the rollback process for
newly upgraded software that may have problems, and to
install patches and bug fixes for operational software.

Using the tools provided by the Installation Manager, a
default installation package can be built. The standard
installation package simply performs a build (if needed)
and copies or links products to the designated production
directory. The developer is free to enhance the standard
installation package if needed.

Proceedings of ICALEPCS2003, Gyeongju, Korea

440

Since there are multiple production areas at Jefferson
Lab, the Installation Manager also provides tools for
developers to designate default production areas for an
application. In addition, the system supports multiple
platforms and the Installation Manager provides tools to
automatically invoke the correct compiler for an
application.

The history of an application’s products is maintained
in the database. For any span of time it is possible to
determine which release of an application is the current
production release, which release is the rollback, which
release is available for beta testing and which releases are
newly installed or obsolete. The entire timeline for an
application can also be provided using information in the
database.

One of the requirements of our configuration
management system is that the production areas are read-
only. The only way to install or to patch production
software is through the Installation Manager’s tools. This
requirement is vital to maintain operational reliability and
also offers a great incentive for developers to use the
system, since they will not be able to install or upgrade
operational software unless they do.

One more function of the Installation Manager is to
allow a developer to register a particular release as
available for beta testing and then to allow a user to
register to be a beta tester for that application. The
Installation Manager provides tools to automate this

process and also to automatically “unregister” beta testers
when a release moves from beta testing into production.

CURRENT STATUS AND FUTURE PLANS
The coding for all the managers except for the

Installation Manager is complete. Once the Installation
Manager is complete the next step is to release the system
and spend some time training developers and moving
operational software into the system.

Future plans at this point are to provide tools for
software managers and to build a graphical user interface
to supplement the command line interface.

REFERENCES
[1] M.C. Paulk, “The Capability Maturity Model

Guidelines for Improving the Software Process,”
Carnegie Mellon University, Software Engineering
Institute, 1995.

[2] S.K. Schaffner, “A Relational Database Model For
Managing Accelerator Control System Software At
Jefferson Lab,” contributed to 8th International
Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS 2001), San
Jose, California, 27-30 Nov 2001.

[3] R.T. Snodgrass, “Developing Time-Oriented Database
Applications in SQL,” Morgan Kaufmann Publishers,
San Francisco, California, 2000.

Proceedings of ICALEPCS2003, Gyeongju, Korea

441

	KNOWLEDGE-BASED SOFTWARE MANAGEMENT*
	MANAGEMENT ISSUES
	Users
	Knowledge Base

	USER INTERFACE
	Application Manager
	Location Manager
	Package Manager
	Support Manager
	Installation Manager

	CURRENT STATUS AND FUTURE PLANS
	REFERENCES

