
DATABASE APPLICATION FOR CONTROL SYSTEM HARDWARE
MANAGEMENT

R. Broomfield, M. Heiniger, T. Korhonen, T.Pal, Paul Scherrer Institute, 5232 Villigen, Switzerland

Abstract
The Paul Scherrer Institute (PSI) is operating at present

two accelerator facilities, and a third one is under
construction. The control system hardware for these
facilities is managed by a single group. To be able to keep
track of the hardware (more than 300 VME and CAMAC
systems), database applications are being developed. The
set of applications provide features to track the stock
status as well as the life cycle of components. It will also
optimise the spare parts stock and improve the overall
quality of service. The paper presents the conceptual
design and implementation, using object relational
methods, of the Oracle RDBMS and web application
server.

QUANTIFYING THE CORE
 DATABASE REQUIREMENTS

With the large number of hardware deployed in the
control systems of PSI accelerators, the logistics of
handling all the hardware becomes a burden. Without an
overview of the status of hardware stock, it is almost
impossible to know when new modules should be
ordered, where they existing ones are installed and so on.
For that reason a database application (called Controls
Inventory Database or CIDB) has been developed. The
purpose of it is to keep track of what hardware modules
are installed, what is in stock, what hardware is in repair,
on loan or otherwise not deployed. By recording the
history of moving the modules, their fault history and
repair data (=reasons for the fault) we will be able to
accumulate a wealth of empirical reliability data, which
will aid in estimating needed stock levels, finding out
weak modules, doing preventive maintenance and so on.
The database includes the notion of installed subsystems,
so it is possible to find out which hardware modules are
used in a subsystem.

Some functionality that should be relatively easy to add
to the core database system would also enable us to
handle and track requests for additional hardware (new
subsystems), include financial information to easily find
out what the costs of systems are and to store hardware
details like card firmware versions and so on.

At a later stage it expected to couple this database with
the control system so that the control system hardware
configuration for the low-level controllers could be
generated from the database.

The SLS Controls group uses predominantly VME and
in particular VME64x. The rest of the Controls group is
also moving towards VME. Thus the design was started
using the normal hierarchy of a VME system as a guide to
implementing the database, i.e. Racks can contain VME
Crates, VME Crates can contain modules and VME

Modules can contain Mezzanine Cards. Thus the bulk of
equipment would be VME or related products. Initially
this would be the case but provision would be made to
incorporate all types of hardware.

TABLE DESIGN AND
IMPLEMENTATION

Based on the requirements described in the previous
sections, the relational model, in terms of the entities and
their relationships has been built. Oracle tools [1] have
been used, both to produce the server model as well as for
reverse engineering during the design process. The
implementation is on version 8.1.7 of the (Oracle) server
engine. The entities are a set of modular repetitive pair
structure, for the different hardware (Crates, Power
Supplies, VME cards, Mezzanine cards), comprising of a
part which describes the type of hardware (description
tables) and the other the actual hardware component
details (master tables).

Referential integrity is imposed, in the usual way, with
primary key and foreign key constraints. The primary
keys for the hardware components are the site-specific,
unique identity tags attached to a particular piece of
hardware, and a description identifier for the description
tables. The cardinality is one-to-many, and the
optionality, depending on the case, is imposed via not null
constraints. Additional restrictions on the values are
enforced by check constraints. Downward
denormalization has been used on some tables for
convenience, bearing in mind the requirement to maintain
the appropriate attributes after inserts and updates.

Figure 1 shows the server model. The 'crate master' is
the 'driving' table. Each crate and its contents has an
association to one or more 'system names', according to a
naming convention [2], which represents the accelerator
or beamline devices controlled by the IOC(s) in the crate.

For the initial data capture, the sql*loader utility was
used with a set of comma separated variable files,
mapping to the individual tables, after a process of
consolidation from legacy data. The table loading
sequence was according to the foreign key constraints.

Inconsistencies in the data sets, with respect to the
constraints, were written to a log file, and after correction,
the respective tables updated as a subsequent step.

The total number of rows, in all tables, for the initial
data is approximately 4000. The timestamp and identity
of the user performing inserts and updates is recorded, for
each table, as is common practice. In addition, however, a
complete set of ‘history’ tables (not shown in figure 1)
were created, which mirror the actual tables themselves,
and record the Data Manipulation Language (DML)

Proceedings of ICALEPCS2003, Gyeongju, Korea

433

action, as well as the old/new values of the attributes as
appropriate, via triggers.

1
Prompt user for
VME ID Number

Yes

6
Display message:
 «Module contains mezzanine cards.
You must remove these first »
Display list of mez. cards

Yes

No

4
Go to Main Menu

3
Display message:
« Module already in Stock »

2
Is VME unit in

Stock?

5
Does VME unit contain

mez. cards?

CIDB Actions - Return Equipment to Stock

9
Display new status in a new Portlet

No

08.10.2003

Main Menu

Move VME to stock

7
Display current status from VME_Master

8
Update VME_MASTER

10
Move another unit

to stock?

Yes

No

VME Modules

 Figure 1: Server model diagram (abbreviated).

WEB APPLICATIONS
 One of the objectives is to provide a versatile set of

interactive web applications to access the data, and
display the results. Oracle WebDB (Portal) is used, and
provides thin client HTML interfaces, via the Oracle
application Server (9iAS), respectively [1]. The
application component wizards of the tool allow for rapid
application development, in the case of simple forms and
reports. However, due to the limitations of the wizards, as
well as the inherent limitations of the web, such as its
stateless nature, it is difficult to store and maintain
variables. To overcome these, concerning the more
complex applications, with interactive feedback, it is
necessary to use pl/sql stored procedures and JavaScript.

Figure 2: Flow diagram – move VME module to Stock

 The web applications have been structured in a menu,

according to the functions, such as deploying equipment
to a system, returning it to stock or to ascertain the
availability. Access security and privileges to execute
components and modify the data is granted via (database)
schemas and roles.

 The applications require between five to eight

interactive steps via forms and reports components to
insert or update equipment. In order to optimize
performance, (Oracle) collection constructs are used to
bulk-bind the output of queries against tables, in the pl/sql
stored procedures associated to the application
components.

As an illustrative example, Figure 2 shows a generic
flow diagram corresponding to moving equipment to a
system. The basic form and report templates are, in this
way, reusable, and the sql query is customized for the
specific type of hardware component table, depending on
the application.

ap
are
co
en

Proceedings of ICALEPCS2003, Gyeongju, Korea

434
Figure 3: Web Portal application components.

At the time of writing this article, approximately 30
plications exist, built using webDB components. These
 in the process of being transformed to portal

mponents and portlets, which offer added value to the
d user, such as to reduce the number of navigation

steps, to different pages, for a specific task. Figure 3
shows an example of a page, comprising of two portlets:
the upper is a form component, and the lower a report
component.

On click of the form’s submit button, an event handler
passes the input parameter(s) to the report component,
and after processing, the results are displayed, after a page
refresh, on the same HTML page. Page tabs, also visible
in figure 3, are used to group sets of applications, again
with the goal to reduce the time needed to search for the
appropriate application component.

The development of the web applications has been the
majority fraction (~ 2/3) of the total time resource. From
our experience, it is unlikely that this fraction can be
reduced significantly in the future, as it is dominated by
the development time for the customized requirements,
albeit taking into account the reuse of pl/sql library
packages, common to the applications.

SUMMARY AND OUTLOOK
A core set of functions for the database application has

been put into operation, and is in use for the control

system hardware management. This has enabled to
overcome legacy implementation, and provide a common
repository for the accelerator facilities at the PSI.

Oracle object types are being progressively introduced,
with the existing tables, which enable to encapsulate the
underlying structures of the hardware components (e.g.
VME modules contained in a crate), with a corresponding
simplification in the sql and pl/sql constructs for the DML
statements.

Extensions to the core functions, such as, to keep track
of the information concerning the reliability and life cycle
of the components, although available in an indirect
manner from the existing tables (‘history’ tables), have to
be fully integrated into the set of applications. It is also
envisaged to implement functionality in order to store
time-dependant calibration data for the appropriate
hardware components.

REFERENCES
[1] Oracle Corporation, http://www.oracle.com
[2] A. Streun, SLS Functional Device Naming

Convention, http://slsbd.psi.ch/pub/slsnotes/naming

Proceedings of ICALEPCS2003, Gyeongju, Korea

435

	DATABASE APPLICATION FOR CONTROL SYSTEM HARDWARE MANAGEMENT
	QUANTIFYING THE CORE� DATABASE REQUIREMENTS
	TABLE DESIGN AND IMPLEMENTATION
	WEB APPLICATIONS
	SUMMARY AND OUTLOOK
	REFERENCES

