
AN INTEGRATED ENVIRONMENT FOR CONTROL SYSTEM
DEVELOPMENT

S. Hunt, PSI, Villigen, Switzerland

Abstract
As the cost of manpower is the major factor in the cost

of a modern control system, reducing the time to develop
and test control systems can have a major impact on
overall cost. An integrated development environment has
been developed at the Swiss Light Source for building
and maintaining control systems using the EPICS toolkit.
This package guides the developer through the stages of
control system development, and as well as speeding up
the process, helps the designer to more closely follow the
development guidelines and so makes the project easier to
maintain. By automating many tasks the package reduces
errors, while still allowing customisation where
necessary. The tool supports the following features: CVS
interface including browse, checkout, addition, commit
and tagging of modules to and from the repository;
Automatic generation of documentation including lists of
hardware needed. Automatic generation of configuration
files, including files for the Archiver, Alarm handler, and
Cdev. Checking of EPICS database syntax before
installation; Automatic generation of basic user screens;
Running the project in a simulation mode (without I/O
hardware) while still in the development environment,
allowing rapid development of user screens; Installation
of files to the correct directories in the production area.
With this tool, the first version of an average project,
requiring analogue, digital, temperature, and Motor I/O,
with the associated user screens, alarm panels, archiving,
and trending can be running in under one hour. Rollback
to a constant set of config files and user applications takes
less than one minute.

INTRODUCTION
The largest single component of control system cost,

over the lifetime of a project in manpower for software
development and integration. It follows therefore that
reducing the time needed for the development and
maintenance of control system will have a very large
impact on reducing overall cost. This paper presents the
motivation behind, and implementation of an integrated
environment for developing accelerator control systems.
Although built to support the SLS, much of the
functionality can be useful at other locations, and some
effort has been made to support site specific
customisation.

STAGES OF BUILDING ACCELERATOR
CONTROL SYSTEMS

The activities involved in the building of accelerator
control systems can be classified into a number of
overlapping stages:

Providing the controls infrastructure
For hardware components, in the not too distant past,

this stage typically consisted of establishing the
requirements, in terms such as resolution, accuracy,
update rate needed for I/O signals of each device to be
controlled and monitored, then designing and building,
using in-house expertise, the necessary hardware. Now it
is more normal to purchase the necessary components
from industry.

The software infrastructure, consists of providing the
computers, operating system, compilers, as well as the
libraries or packages used for visualisation,
communication, hardware access, error handling,
trending, archiving etc. While in the past this effort took
up a large part of the control group effort, this stage has
been simplified by the availability of existing stable, high
performance components, both from within the
accelerator community (EPICS) and from industry (Scada
packages). It is no longer necessary, or desirable, to write
and maintain the software components that make of the
infrastructure elements of your control system.

Implementation
The implementation of the control system consists of

using the infrastructure already available to provide the
necessary control and monitoring of accelerator devices.
In the past this would often have involved writing
individual applications in a high level language, even
building individual user screens using libraries of
graphics routines such as xlib, or motif. These
applications might have run on general purpose
computers, on consoles or servers, or on real time front
end computers. In some accelerator projects, the
implementation stage was largely the responsibility of
individual equipment groups, not the controls group. Now
it is often the case, both with EPICS and Scada systems,
to configure systems, rather than write application in the
traditional sense. Standard tools are available for
functions such as alarm handling, archiving, and trending.
Tools are available to build user screens in an interactive
fashion Control algorithms can be implemented by
providing parameters to existing prebuillt routines (such
as PID).

INTEGRATORS ARE WE
So in the modern paradigm, the control groups task has

become that of system integrators, selecting from a pallet
of existing tools, then using those tools to control and
monitor accelerator devices. This has potentially reduced
the effort (cost) of providing the control by a large factor.
So what is missing?

Proceedings of ICALEPCS2003, Gyeongju, Korea

230

Developing using EPICS
Developing using EPICS largely consists of producing

configuration files for each software component and
system. The configuration files are ascii text files, to
make them easy to produce and maintain using standard
tools. Configuration files are produced for:

• EPICS core – the real-time EPICS database which
provides the input output routines to read and
write I/O hardware, and implement control
algorithms.

• Alarm handler – A tool to monitor the state of
EPICS channels and provide that information to
the operator in a hierarchical display.

• Archiver – a tool to record the state of channels,
either periodically, or on change.

• Striptool – a trending tool.
• Medm – An operator interface builder

For the novice, building and managing these tools can

be quite daunting, particularly learning the syntax of each.
Also a change in one, perhaps the addition of a channel in
the EPICS core configuration, requires changes in all
others.

Furthermore each site establishes (perhaps without
realising it) procedures for change and configuration
management. As the EPICS configuration files are text
files, they are well suited to using CVS to track and
manage changes in system configuration

So what is missing?
What was missing in the EPICS world, was a tool for

managing the whole development process, making it easy
for novice users to quickly control accelerator devices, in
a way which is compatible to the overall controls
structure.

WHAT IS SIDE?
Side[1] is a program that integrates the existing EPICS

tools using a graphical interface. It provides a central
point in the control system development process. By
using a tool it is easier for a user to follow site specific
standards such as file locations, and file names. A project
goal was to make it possible to provide control and

monitoring of a new device of medium complexity, fully
integrated into the control system, within one hour.

CVS functions
At SLS all configuration files used in the accelerator

are stored in CVS. This allows us to track changes, and if
necessary rollback to an old version. Functions provided
are similar to those in tkcvs, with the addition of the
ability to browse the cvs repository.

File creation function
Side manages the creation of the configuration files

necessary for the project. Once the basic configuration
files for EPICS core have been created (template and
substitution files) the other files can be auto generated in
a consistent manner. These can later be customised.

Testing Functions
Side can run a basic syntax check on the EPICS core

configuration files, which finds many common basic
errors. It can start a simulation of the real-time system,
replacing calls to I/O hardware with simulated devices,
this provides a further check of the syntax and logic, an
can be used to test high level applications and user
screens.

Installation functions
After testing, Side can use the SLS (or other site

specific) programs to install configuration files in there
correct final locations. At SLS files are installed directly
from CVS to their final location, rather from a user
directory, this avoids the risk that something is installed
that is not in cvs

CONCLUSIONS
At SLS we have built a tool to integrate the EPICS

control system development process. It meets the initial
goals of making it possible for a novice user to quickly
integrate a new device in the control system, while
respecting the local rules for documentation and testing.

REFERENCES
[1] http://www.sls.psi.ch/controls/software/side

Proceedings of ICALEPCS2003, Gyeongju, Korea

231

	AN INTEGRATED ENVIRONMENT FOR CONTROL SYSTEM DEVELOPMENT
	INTRODUCTION
	STAGES OF BUILDING ACCELERATOR CONTROL SYSTEMS
	Providing the controls infrastructure
	Implementation

	INTEGRATORS ARE WE
	Developing using EPICS
	So what is missing?

	WHAT IS SIDE?
	CVS functions
	File creation function
	Testing Functions
	Installation functions

	CONCLUSIONS
	REFERENCES

