
WECT004
physics/0111087

A DISTRIBUTED FEEDBACK SYSTEM FOR RAPID STABILIZATION OF
ARBITRARY PROCESS VARIABLES*

B. Bevins and A. Hofler, Jefferson Lab, Newport News, VA 23606, USA

* Work supported by the U. S. Department of Energy, contract DE-AC05-84-ER40150

Abstract

In large process control systems it frequently becomes
desirable to establish feedback relationships that were not
anticipated during the design phase of the project. The
“Generic Lock” architecture discussed in this paper
makes it possible for system operators to implement new
feedback loops between arbitrary process variables
quickly and with no disturbance to the underlying control
system. Any available process variables may be selected
for the input and output of the loops so created,
regardless of their physical or logical separation. The
system allows multiple user interface points distributed
through the control system while ensuring consistency
among the feedback loops. This system can be used to
quickly prototype and test new control philosophies or to
control temporary hardware arrangements without any
new software development. It is implemented at the
Thomas Jefferson National Accelerator Facility using the
Common Device (CDEV) [1] framework on top of the
Experimental Physics and Industrial Control System
(EPICS) [2]. This paper discusses the architecture,
implementation, and early usage of the system

1 INTRODUCTION
One of the fundamental entities in any digital process

control system is the discrete closed-loop feedback
controller. Though many such controllers are typically
designed into a large system, it is difficult to anticipate
all possible useful feedback relationships. Hardware
details, operating modes, and even control philosophies
may evolve over time to meet changing needs. Control
systems must have the flexibility to evolve with them.

A Generic Lock Server has been developed at
Jefferson Lab that enables on the fly creation and
configuration of feedback loops using any available
control system I/O signals. With this system, feedback
loops can be created as prototypes for new control ideas
or to satisfy temporary operational requirements with
absolutely no disruption of the existing control system
and no new programming effort required. It builds upon
previous work at the lab in software server based process
control [3]. At present only single-input, single-output
(SISO) loops are available, but multiple-input, multiple-
output (MIMO) loops will be added in the near future.

2 DESIGN

2.1 Background

The control system software for the CEBAF
accelerator at Jefferson Lab is implemented in two
layers: EPICS databases running on the input/output
controllers (IOC’s) and programs running on Unix hosts
that communicate with the IOC’s by Channel Access
(CA). Among the latter are programs that implement
feedback loops to stabilize various machine parameters
against disturbances at < 1Hz [4]. They are referred to as
“Slow Locks” to distinguish them from the Fast
Feedback System, which uses dedicated hardware to
achieve much faster sampling rates [5]. They come in
various distinct flavors: orbit locks, energy locks, current
locks, and helicity-correlated asymmetry locks. Some
calculate their feedback gains with data from on-line
accelerator model servers. Others empirically measure
their response functions during an explicit calibration
step [6]. Still others use operator-entered gains that have
been calculated off-line or optimized interactively.
Though they share some code, each lock type exists in its
own dedicated server with its own GUI. Adding new lock
types has been difficult and time consuming.

2.2 The Generic Lock Server

An effort is now underway to unify the various lock
types into a common architecture that will be more easily
maintainable and extensible. The first fruit of this effort
is the Generic Lock Server. This server can host multiple
lock types simultaneously and allows the interactive
creation and destruction of new locks at runtime. It stores
configuration information in a human readable Extensible
Markup Language (XML) file. The Generic Lock Server
presently handles a new class of general purpose
Proportional, Integral, Derivative controller (PID) locks
as well as the specialized current and asymmetry locks.

2.3 The PID Locks

The functionality of the PID locks is derived from the
EPICS CPID record, extended to allow both the input and
output signals to be arbitrarily specified at runtime. Any
variable in the control system accessible through CDEV

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

259

can be used. This includes all CA signals as well as
signals from other CDEV servers, including model
servers and other locks.

A GUI allows users to control all the PID locks and
create new ones from anywhere on the network. Once a
new lock has been created, the user enters names for
input and output of the feedback loop, PID gain
parameters, and output signal limits. The lock can then be
activated.

3 IMPLEMENTATION

3.1 Server Architecture

The lock server programs are implemented in C++ as
CDEV Generic Servers [7] where each lock is a virtual
device that exposes a set of virtual attributes containing
the lock’s operating parameters. The Generic Lock
Server uses this same setup, but takes advantage of more
recent developments in C++. It uses the containers and
strings of the C++ standard library (formerly the standard
template library) to avoid memory management issues.
This has resulted in a very robust product being
developed in much less time that would otherwise be
possible.

Figure 1 shows the relationships among the main
classes used by the Generic Lock Server. In order to

minimize coupling among the components, the
LockServer engine uses a LockFactory class to construct
locks of various types. The abstract Lock class maintains
a private list of all the locks that have been instantiated
and controls access to them. Each derived lock type
registers itself with the factory at initialization. All that is
necessary to add a new lock type is to relink the server
with the new object file for the lock type. The
ConfigParser and LockFactory classes are singletons.

3.2 Configuration Files

The XML configuration file is both parsed and written
using the “non-commercial” Qt/X11 toolkit from
Trolltech [8]. The Qt XML Document Object Model
(DOM) interface is encapsulated in the ConfigParser

class used by the LockServer. A partial XML
configuration file is shown below.

Within the main <lockConfig> element, there are zero
or more <Lock> elements and zero or more <device>
elements. Each <Lock> triggers the construction of a
new lock of the specified type with the specified name.
Each <device> contains zero or more <attribute>
elements. The parser attempts to map the names of each
<device>/<attribute> pair into a CDEV device/attribute
existing in the server and set its value accordingly.

<lockConfig>
 <Lock name="PIDLock02" type="PIDLock" />
 <device name="PIDLock02" >
 <attribute name="GainD" value="0" />
 <attribute name="GainI" value="1" />
 <attribute name="GainP" value="0" />
 <attribute name="InputName"

value="ILI1L_PHASEerror"/>
 <attribute name="Interval" value="4" />
 <attribute name="MaxChange" value="0.1" />
 <attribute name="MaxPos" value="25" />
 <attribute name="MinPos" value="15" />
 <attribute name="OutputName" value="R1XXPSET" />
 <attribute name="SetPoint" value="0" />
 <attribute name="Description" value="North Linac First

Pass Gang Phase" />
 </device>
<!--More locks of various types would follow here. ->
</lockconfig>

3.3 User Interface

The GUI’s for the slow locks are scripted in Tcl/Tk.
The PID Lock GUI is shown in Figure 2. All the PID
locks are presented in a scrollable list and each one can

be collapsed or expanded using the arrow buttons on the
left. Output values from the locks are in the darker boxes
while user inputs are in the lighter boxes. The button to
the left of each lock’s textual description field turns the
lock on and off. A lock can be deleted using the button in
the upper right corner of its display. A new lock is
created using the button in the far lower left. The new

Lock

PIDLock

CurrentLock

AsymmetryLock

LockServer

ConfigParser

LockFactory

cdevGenericServer

Figure 1: Simplified Lock Server Class Diagram

Figure 2: The PID Lock GUI

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

260

lock is assigned the next available device name, first
reusing the slots of any deleted locks. When a lock is
deleted or a new lock is created, every instance of the
GUI running anywhere on the network is notified to
update its display.

4 FUTURE DIRECTIONS

4.1 Additional Lock Types

The remaining slow lock types in use at Jefferson Lab
will be integrated into the Generic Lock Server
architecture. For this to happen the architecture must be
extended to allow MIMO lock types. It must also allow
for locks that must be calibrated at runtime like the Orbit
Locks and locks that use the on-line accelerator model
server for calibration like the Energy Locks.

4.2 Server Security

Access to all CEBAF IOC’s is controlled through CA
security. To function, the Generic Lock Server must run
with a user ID that is allowed to write to the IOC’s.
However, because it is designed to be flexible, the CDEV
Generic Server has no built-in security model. This
means that any user connected to the accelerator network
can write to the virtual attributes of the lock devices and
create a lock that writes to any channel in the system,
effectively circumventing CA security. Plugging this
loophole is a top development priority. A security layer
will be added to the lock server allowing writes only by
specific groups of users from specific machines. In the
longer term, it would be useful if the attributes of a lock
would inherit the security of the lock’s output channel.

4.3 PID Auto-tuning

Determining appropriate gains for PID controllers is a
non-trivial task. To make the PID Lock class more usable
by non-experts it would be very desirable to have a
means to automatically characterize the closed loop
transfer function and determine appropriate PID gains for
optimum stability, if they exist. Many such algorithms
exist [9]. If one can be found that is sufficiently general,
it might be integrated into the lock server architecture or
could exist as a separate process, making it more useful
for tuning EPICS CPID records as well.

4.4 Dynamic Linking

The very low degree of coupling among the various
lock and server classes means that it is not necessary to
statically link the lock classes with a server. Following
the model that CDEV uses with its service classes, the
code for individual lock types could be dynamically
loaded as needed. This would allow completely new
types of locks to be added to a running server without
even restarting it, much less rebuilding it.

4.5 Expanding the Lock Namespace

One limitation imposed by CDEV is that all device
names must be declared in static Device Definition
Language (DDL) files that are used by clients to map
device names to the appropriate services and servers.
Thus, although new locks can be created in the server
with arbitrary names, clients cannot find them unless they
use names pre-declared in a common DDL file. This
prohibits the use of descriptive device names for
dynamically created locks. A dedicated client like the
Generic Lock GUI could be designed to dynamically
discover the lock names, but they would still not be
available to general purpose clients like archivers.

CDEV can be configured to fall through to a particular
service when a device name is not found in the DDL file.
For many sites that use CDEV with EPICS, this default is
configured to use CA. The Portable CA Server (PCAS)
[10] suggests a way to make fully dynamic virtual
devices. A PCAS could be set up to host the virtual
device/attribute pairs needed by such devices.

5 ACKNOWLEDGEMENTS
Recognition of the need for the Generic Lock Server

and the PID Locks as well as ideas for their
implementation grew out of many discussions with the
members of the Jefferson Lab Operations Group and the
Beam Applications Team, especially Yves Roblin.

6 REFERENCES
[1] J. Chen, G. Heyes, W. Akers, D. Wu and W.

Watson, “CDEV: An Object-Oriented Class Library
for Developing Device Control Applications”,
Proceedings of ICALEPCS95, Chicago.

[2] L. R. Dalesio, et. al., “The Experimental Physics and
Industrial Control System Architecture: Past,
Present, and Future”, Proceedings of ICALEPCS93,
Berlin.

[3] M. Bickley, B. A. Bowling, D. A. Bryan, J. van
Zeijts, K. S. White and S. Witherspoon, “Using
Servers to Enhance Control System Capability”,
Proceedings of PAC 1999, New York.

[4] J. van Zeijts, S. Witherspoon and W. A. Watson,
“Design and Implementation of a Slow Orbit Control
Package at Thomas Jefferson National Accelerator
Facility”, Proceedings of PAC 1997, Vancouver.

[5] R. Dickson and V. Lebedev, “Fast Feedback System
for Energy and Beam Stabilization”, Proceedings of
ICALEPCS99, Trieste, Italy.

[6] A. Hofler, D. Bryan, L. Harwood, M. Joyce and V.
Lebedev, “Empirically Determined Response
Matrices for On-line Orbit and Energy Correction at
Thomas Jefferson National Accelerator Facility”,
Proceedings of PAC 2001, Chicago.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

261

[7] W. Akers, “An Object-Oriented Framework for

Client-Server Applications”, Proceedings of
ICALEPCS97, Beijing.

[8] Trolltech AS,
 http://www.trolltech.com/products/qt/

[9] K. J. Åström and B. Wittenmark, Adaptive Control,
2nd ed., pp.375-389, Addison-Wesley, 1995.

[10] J. O. Hill, “A Server Level API for EPICS”,
Proceedings of ICALEPCS95, Chicago.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

262

