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Abstract 
The EPICS Input/Output Controller (IOC) core-

program, iocCore [1], is now portable to multi-
platforms. The Linux operating system, among them, 
seems to be a promising candidate for a platform to run 
iocCore, considering the recent high appreciation in 
desktop and server use as well as control fields.  

The Linux kernel, however, is not suitable for time-
critical applications, since it responds to external events 
with unpredictable latency. We summarize three known 
causes of the latency, and then discuss some of the 
different solutions and how they affect the functionality 
of iocCore. 

As a possible alternative, we propose an approach 
that dispatches user-level processes by a real-time 
kernel aiming at a consistency of availability with 
predictable responsiveness. 

1 INTRODUCTION 
In EPICS 3.14, the latest version, iocCore can run on 

Linux with OSI (Operating System Interface) libraries 
supplied as a part of the distribution [1]. The OSI 
libraries interface iocCore and POSIX threads (POSIX 
1003.1c) with a real-time extension (POSIX 1003.1b). 

However, the real-time extension can support only 
so-called “soft” real-time applications, where relatively 
rare misses to the deadline can be acceptable. It applies 
even if the POSIX threads are implemented on top of 
kernel-level threads because the sources of the 
unpredictability are inherent in the Linux kernel, itself. 

In section 2, the causes of unpredictable latency in 
the Linux kernel are summarized. Section 3 describes 
the advantages and disadvantages of some of the real-
time extensions of Linux in view of the availability to 
iocCore. In section 4, we propose a solution based on 
L4-Linux, a port of the Linux kernel onto a real-time 
kernel named L4 [2]. Conclusions are given in Section 
5. 

2 SOURCES OF UNPREDICTABLE 
LATENCY 

There are three sources of unpredictable latency in 
the Linux kernel with widely different impacts: non-
preemptive kernel, interrupt disabling and address 
space switching. 

2.1 Non-preemptive Kernel 

A process under Linux runs in kernel-space while it 
executes a system call. The term “non-preemptive 
kernel” implies that the Linux kernel does not switch 
the execution from a process in kernel-space until it 
invokes the scheduler in its own context. Real-time 
kernels, however, must switch the execution upon 
return from an interrupt handler if the interrupt gets a 
higher priority process ready to run. The Linux kernel 
does not allow preemption in the kernel, since it cannot 
protect the consistency of kernel data if multiple 
processes concurrently run in the kernel. A higher 
priority process that gets ready to run has to wait until 
the process currently running in the kernel exits from 
the kernel. While typical latency due to non-
preemptiveness is known to be several tens of 
milliseconds, it can reach 100 milliseconds or more in 
the worst case [3, 4]. 

2.2  Interrupt Disabling 

Mutual exclusion to keep the consistency of kernel 
data is required between a process in the kernel and an 
interrupt handler, and between interrupt handlers as 
well. Since interrupt handlers can not sleep, the only 
way to achieve it is to disable interrupts while the 
process or an interrupt handler executes the critical 
section. Even though the typical execution path of such 
critical sections is very short compared to the whole 
execution path of a system call, it can reach, in time, up 
to several hundreds of microseconds [5]. It can even be 
much longer in special cases [4]. 

2.3  Address Space Switching 

Linux gives each process an independent address 
space, in more concrete terms, a set of mapping tables 
to translate a virtual address into a physical address. 
Some of the entries of the tables are cashed in a 
Translation Look aside Buffer (TLB) of the Memory 
Management Unit (MMU). Upon process switching, all 
of the cashed entries need to be flushed to invalidate 
the old mapping. The process newly switched in starts 
without having the cashed entries, and then cases TLB 
misses as it evolves. This brings in unpredictable 
latency of tens of microseconds. 
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3 POSSIBLE SOLUTIONS 

3.1  Real-time Tasks in Linux Kernel Space 

Some approaches, such as RTLinux [5] and RTAI 
[6], introduce a hardware abstraction layer, a small 
kernel, under the Linux kernel. The real-time kernel, as 
well as its tasks, resides in Linux kernel space, and it 
takes complete precedence on interrupt management 
and CPU scheduling over the Linux kernel. This 
approach is free from all of the three causes of 
unpredictable latency. First, the real-time tasks have 
essentially nothing to do with the non-preemptive-ness 
of the Linux kernel because they do not call for Linux 
services. Second, the Linux kernel is not allowed to 
disable interrupts in this system. Third, the real-time 
tasks run in the Linux kernel space, which has been 
mapped into address spaces of every Linux process. No 
matter which process an external event interrupts, the 
real-time tasks are ready to handle it without switching 
any address spaces. 

In this approach, however, all iocCore programs, 
including the run-time database, need to be moved into 
the Linux kernel in order to use real-time tasks for the 
threads of iocCore. It seems not only unrealistic, but 
also unfavorable, since debugging an application easily 
crashes the Linux kernel. On the other hand, if iocCore 
resides in user-space, it must run under the standard 
Linux kernel.  

3.2  User processes Under Improved Linux 

If the causes of latency, at least the dominant latency 
that stems from the non-preemptive-ness, are removed 
from the Linux kernel, user processes can be put to use 
for real-time applications. This approach is the most 
convenient way to run iocCore, since the OSI libraries 
based on the POSIX threads can benefit from the 
improvement just by replacing the Linux kernel, as 
long as the POSIX threads use kernel level threads. 
Possible evolution of the Linux kernel is clearly 
isolated from that of iocCore at the POSIX interface. 

The most promising way to achieve this seems to be 
to make the Linux kernel preemptive by converting 
SMP spin-locks to a measure for mutual exclusion 
between multiple processes on a single processor. This 
approach includes the changes to have the kernel honor 
specified priorities and to switch the process on a return 
from interrupt if it is possible and required. This 
improves the latency down to, typically, around one 
millisecond [4]. 

As some argue, however, the predictability of the 
latency still remains essentially at a soft real-time level. 
It is true that the requirement to the spin-lock is 
essentially the same regardless of whether it is for 
between processes on different CPUs, or for between 
processes on a single processor. However, it does not 
necessarily mean that the usage of spin-locks for SMP 
in the existing Linux kernel is optimized enough to 

ensure real-time responsiveness when it is converted. 
The average performance of SMP stays even if a few 
parts of the kernel code allow a process to run too long 
with holding a spin-lock. It, however, directly affects 
the longest latency if the spin-lock is used to make the 
Linux kernel preemptive. Checking up on the whole 
kernel codes to fix such problematic parts should take 
much effort, since the Linux kernel is too huge and 
complex to be fully analyzed. Furthermore, the check 
must be iterated every time any part of the Linux kernel 
is modified, or a new driver module is added to the 
kernel. 

3.3  User processes under real-time kernel 

The two approaches discussed in the previous 
subsections aim at either high predictability or high 
availability. To be available, the threads of iocCore 
must run in user-space. To be predictable, the Linux 
kernel must be excluded from the execution path of 
dispatching the threads. If a system allows threads in 
user-space to be dispatched by a real-time kernel, 
consistency of availability and predictability is possible. 

This approach should be free from any unpredictable 
latency due to the non-preemptiveness of the Linux 
kernel. It must also be able to avoid the disabling of 
interrupts by the Linux kernel. It accepts, though, the 
unpredictability due to address space switching for the 
cost to use user-space. The threads must be able to 
issue real-time kernel system calls, as well as Linux 
system calls, when predictable responsiveness is not 
necessary. At present, candidates for this approach are 
very few. One is LXRT, an option of RTAI [6]. 
Another is L4-Linux, as described in the next section. 

4  IOC-CORE ON L4-LINUX 

4.1  What is L4-Linux? 

L4-Linux was developed at Dresden Institute of 
Technology in corporation with IBM Watson Research 
Center [2]. It is a port of Linux kernel as a server task 
on top of a real-time micro kernel, named L4, or its 
successor, named Fiasco [7], as illustrated in Fig. 1. 

L4 is a preemptive micro kernel, which provides its 
tasks with only three primitives, threads, address 
spaces, and Inter Process Communication (IPC). The 
entity of the Linux server, as well as its “processes”, is 
an L4 task. The Linux “processes” call the Linux server 
for a service through an IPC call of L4. Page faults 
caused by a process are also transformed into IPC with 
the Linux server, and then handled in the same way as 
standard Linux systems. Every Linux “process”, being 
a L4 task, can also issue L4 system calls. 
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4.2  L4-Linux as a real-time platform 

L4-Linux was designed in order to run a real-time 
application and non-real-time Linux applications on a 
single computer. Linux processes, hence, in themselves 
are not for real-time applications. However, the basic 
architecture of L4-Linux allows a process to be turned 
into a real-time process, basically, if it is given a higher 
priority than the Linux server. The process can preempt 
execution from the Linux server because both the 
“process” and the Linux server are just a task under 
L4’s scheduling. The “process” can keep running, as 
long as it does not issue any Linux system calls, until it 
suspends itself by calling an L4 system call, or being 
preempted by another real-time process with higher 
priority. 

A problem, unfortunately, was found in relation to 
virtual memory management. In L4-Linux, there are 
two different sets of page tables for the virtual memory 
space of a process. One is in the Linux server and the 
other is in the L4 kernel. The former is the one that the 
Linux server manipulates as does the standard Linux 
kernel. The latter is the real page tables that the MMU 
refers to. The two sets of page tables are forced to be 
equal upon page faults. This doubly layered memory 
management has two negative impacts on “real-time 
processes”. First, a newly created thread through a 
Linux clone system call shares the page tables with its 
creator, not in the L4 kernel, but in the Linux server. 
The cloned thread gets its own page tables in the L4 
kernel. This results in the need for address space 
switching upon “thread switching”. The other one, 
which is more serious, is a coherency problem between 
the two sets of page tables. For example, a process can 
cause page faults even after a mlockall system call has 
been issued to make itself memory-resident, because 
mlockall returns with only the page tables in the Linux 
server updated, but leaving the real ones unchanged. 
Page faults to update the real page tables decimate the 
assumption that real-time processes run without 
depending on the Linux server. 

With our patches to work around the coherency 
problem, interrupt response was measured with heavy 
disk I/O activity as a background. Including 3 times of 
“thread switching” into the real-time thread in the worst 
case, the worst latency was measured to be roughly 700 
microseconds in 105 times of trials on a Celeron 300 
MHz CPU [8]. It also includes the latency due to 
disabling of interrupt by the Linux server. L4-Linux 
can be configured so as not to allow the Linux server to 
disable interrupts. If this option is enabled and the 
number of context switching is reduced, the latency 
may be reduced down to around 100 microseconds. 

4.3  iocCore on L4-Linux 

In order to confirm the ability of the system to run 
iocCore, OSI-libraries for L4-Linux were implemented, 
though this is not complete. Each of their functions 
relies only on L4 system calls to preserve real-time 
responsiveness, as far as it is supposed to be called 
constantly from the iocCore threads. Some other 
functions that create threads or semaphores issue Linux 
system calls for resource allocation at a cost of losing 
the responsiveness temporarily, assuming that they are 
called only in the initialization sequences of iocCore. 
Channel Access- related threads, however, rely on 
Linux for TCP/IP socket services, and they work in 
much the same way as they do on the standard Linux 
kernel. Other than that, iocCore threads can run with 
lower predictable latency under L4 kernel control. 

5 CONCLUSIONS 
 Though real-time tasks in the Linux kernel space 

can ensure the lowest and most predictable latency, 
running iocCore in the Linux kernel is an unfavorable 
solution. On the contrary, an improved Linux kernel 
gives the highest availability to iocCore, but its 
responsiveness essentially remains at a soft real-time 
level. If a platform allows threads in user-space to be 
dispatched by a real-time kernel, it can provide iocCore 
with not only an available basis, but also predictable 
responsiveness. L4-Linux is one of the possible 
candidates for this kind of approach. 
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Figure 1: Architecture of L4-Linux 
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