
WEBT003

L4-LINUX BASED SYSTEM AS A PLATFORM FOR EPICS IOC-CORE

J. Odagiri, N. Yamamoto and T. Katoh, KEK, Oho 1-1, Tsukuba, JAPAN

Abstract
The EPICS Input/Output Controller (IOC) core-

program, iocCore [1], is now portable to multi-
platforms. The Linux operating system, among them,
seems to be a promising candidate for a platform to run
iocCore, considering the recent high appreciation in
desktop and server use as well as control fields.

The Linux kernel, however, is not suitable for time-
critical applications, since it responds to external events
with unpredictable latency. We summarize three known
causes of the latency, and then discuss some of the
different solutions and how they affect the functionality
of iocCore.

As a possible alternative, we propose an approach
that dispatches user-level processes by a real-time
kernel aiming at a consistency of availability with
predictable responsiveness.

1 INTRODUCTION
In EPICS 3.14, the latest version, iocCore can run on

Linux with OSI (Operating System Interface) libraries
supplied as a part of the distribution [1]. The OSI
libraries interface iocCore and POSIX threads (POSIX
1003.1c) with a real-time extension (POSIX 1003.1b).

However, the real-time extension can support only
so-called “soft” real-time applications, where relatively
rare misses to the deadline can be acceptable. It applies
even if the POSIX threads are implemented on top of
kernel-level threads because the sources of the
unpredictability are inherent in the Linux kernel, itself.

In section 2, the causes of unpredictable latency in
the Linux kernel are summarized. Section 3 describes
the advantages and disadvantages of some of the real-
time extensions of Linux in view of the availability to
iocCore. In section 4, we propose a solution based on
L4-Linux, a port of the Linux kernel onto a real-time
kernel named L4 [2]. Conclusions are given in Section
5.

2 SOURCES OF UNPREDICTABLE
LATENCY

There are three sources of unpredictable latency in
the Linux kernel with widely different impacts: non-
preemptive kernel, interrupt disabling and address
space switching.

2.1 Non-preemptive Kernel

A process under Linux runs in kernel-space while it
executes a system call. The term “non-preemptive
kernel” implies that the Linux kernel does not switch
the execution from a process in kernel-space until it
invokes the scheduler in its own context. Real-time
kernels, however, must switch the execution upon
return from an interrupt handler if the interrupt gets a
higher priority process ready to run. The Linux kernel
does not allow preemption in the kernel, since it cannot
protect the consistency of kernel data if multiple
processes concurrently run in the kernel. A higher
priority process that gets ready to run has to wait until
the process currently running in the kernel exits from
the kernel. While typical latency due to non-
preemptiveness is known to be several tens of
milliseconds, it can reach 100 milliseconds or more in
the worst case [3, 4].

2.2 Interrupt Disabling

Mutual exclusion to keep the consistency of kernel
data is required between a process in the kernel and an
interrupt handler, and between interrupt handlers as
well. Since interrupt handlers can not sleep, the only
way to achieve it is to disable interrupts while the
process or an interrupt handler executes the critical
section. Even though the typical execution path of such
critical sections is very short compared to the whole
execution path of a system call, it can reach, in time, up
to several hundreds of microseconds [5]. It can even be
much longer in special cases [4].

2.3 Address Space Switching

Linux gives each process an independent address
space, in more concrete terms, a set of mapping tables
to translate a virtual address into a physical address.
Some of the entries of the tables are cashed in a
Translation Look aside Buffer (TLB) of the Memory
Management Unit (MMU). Upon process switching, all
of the cashed entries need to be flushed to invalidate
the old mapping. The process newly switched in starts
without having the cashed entries, and then cases TLB
misses as it evolves. This brings in unpredictable
latency of tens of microseconds.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

241

3 POSSIBLE SOLUTIONS

3.1 Real-time Tasks in Linux Kernel Space

Some approaches, such as RTLinux [5] and RTAI
[6], introduce a hardware abstraction layer, a small
kernel, under the Linux kernel. The real-time kernel, as
well as its tasks, resides in Linux kernel space, and it
takes complete precedence on interrupt management
and CPU scheduling over the Linux kernel. This
approach is free from all of the three causes of
unpredictable latency. First, the real-time tasks have
essentially nothing to do with the non-preemptive-ness
of the Linux kernel because they do not call for Linux
services. Second, the Linux kernel is not allowed to
disable interrupts in this system. Third, the real-time
tasks run in the Linux kernel space, which has been
mapped into address spaces of every Linux process. No
matter which process an external event interrupts, the
real-time tasks are ready to handle it without switching
any address spaces.

In this approach, however, all iocCore programs,
including the run-time database, need to be moved into
the Linux kernel in order to use real-time tasks for the
threads of iocCore. It seems not only unrealistic, but
also unfavorable, since debugging an application easily
crashes the Linux kernel. On the other hand, if iocCore
resides in user-space, it must run under the standard
Linux kernel.

3.2 User processes Under Improved Linux

If the causes of latency, at least the dominant latency
that stems from the non-preemptive-ness, are removed
from the Linux kernel, user processes can be put to use
for real-time applications. This approach is the most
convenient way to run iocCore, since the OSI libraries
based on the POSIX threads can benefit from the
improvement just by replacing the Linux kernel, as
long as the POSIX threads use kernel level threads.
Possible evolution of the Linux kernel is clearly
isolated from that of iocCore at the POSIX interface.

The most promising way to achieve this seems to be
to make the Linux kernel preemptive by converting
SMP spin-locks to a measure for mutual exclusion
between multiple processes on a single processor. This
approach includes the changes to have the kernel honor
specified priorities and to switch the process on a return
from interrupt if it is possible and required. This
improves the latency down to, typically, around one
millisecond [4].

As some argue, however, the predictability of the
latency still remains essentially at a soft real-time level.
It is true that the requirement to the spin-lock is
essentially the same regardless of whether it is for
between processes on different CPUs, or for between
processes on a single processor. However, it does not
necessarily mean that the usage of spin-locks for SMP
in the existing Linux kernel is optimized enough to

ensure real-time responsiveness when it is converted.
The average performance of SMP stays even if a few
parts of the kernel code allow a process to run too long
with holding a spin-lock. It, however, directly affects
the longest latency if the spin-lock is used to make the
Linux kernel preemptive. Checking up on the whole
kernel codes to fix such problematic parts should take
much effort, since the Linux kernel is too huge and
complex to be fully analyzed. Furthermore, the check
must be iterated every time any part of the Linux kernel
is modified, or a new driver module is added to the
kernel.

3.3 User processes under real-time kernel

The two approaches discussed in the previous
subsections aim at either high predictability or high
availability. To be available, the threads of iocCore
must run in user-space. To be predictable, the Linux
kernel must be excluded from the execution path of
dispatching the threads. If a system allows threads in
user-space to be dispatched by a real-time kernel,
consistency of availability and predictability is possible.

This approach should be free from any unpredictable
latency due to the non-preemptiveness of the Linux
kernel. It must also be able to avoid the disabling of
interrupts by the Linux kernel. It accepts, though, the
unpredictability due to address space switching for the
cost to use user-space. The threads must be able to
issue real-time kernel system calls, as well as Linux
system calls, when predictable responsiveness is not
necessary. At present, candidates for this approach are
very few. One is LXRT, an option of RTAI [6].
Another is L4-Linux, as described in the next section.

4 IOC-CORE ON L4-LINUX

4.1 What is L4-Linux?

L4-Linux was developed at Dresden Institute of
Technology in corporation with IBM Watson Research
Center [2]. It is a port of Linux kernel as a server task
on top of a real-time micro kernel, named L4, or its
successor, named Fiasco [7], as illustrated in Fig. 1.

L4 is a preemptive micro kernel, which provides its
tasks with only three primitives, threads, address
spaces, and Inter Process Communication (IPC). The
entity of the Linux server, as well as its “processes”, is
an L4 task. The Linux “processes” call the Linux server
for a service through an IPC call of L4. Page faults
caused by a process are also transformed into IPC with
the Linux server, and then handled in the same way as
standard Linux systems. Every Linux “process”, being
a L4 task, can also issue L4 system calls.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

242

4.2 L4-Linux as a real-time platform

L4-Linux was designed in order to run a real-time
application and non-real-time Linux applications on a
single computer. Linux processes, hence, in themselves
are not for real-time applications. However, the basic
architecture of L4-Linux allows a process to be turned
into a real-time process, basically, if it is given a higher
priority than the Linux server. The process can preempt
execution from the Linux server because both the
“process” and the Linux server are just a task under
L4’s scheduling. The “process” can keep running, as
long as it does not issue any Linux system calls, until it
suspends itself by calling an L4 system call, or being
preempted by another real-time process with higher
priority.

A problem, unfortunately, was found in relation to
virtual memory management. In L4-Linux, there are
two different sets of page tables for the virtual memory
space of a process. One is in the Linux server and the
other is in the L4 kernel. The former is the one that the
Linux server manipulates as does the standard Linux
kernel. The latter is the real page tables that the MMU
refers to. The two sets of page tables are forced to be
equal upon page faults. This doubly layered memory
management has two negative impacts on “real-time
processes”. First, a newly created thread through a
Linux clone system call shares the page tables with its
creator, not in the L4 kernel, but in the Linux server.
The cloned thread gets its own page tables in the L4
kernel. This results in the need for address space
switching upon “thread switching”. The other one,
which is more serious, is a coherency problem between
the two sets of page tables. For example, a process can
cause page faults even after a mlockall system call has
been issued to make itself memory-resident, because
mlockall returns with only the page tables in the Linux
server updated, but leaving the real ones unchanged.
Page faults to update the real page tables decimate the
assumption that real-time processes run without
depending on the Linux server.

With our patches to work around the coherency
problem, interrupt response was measured with heavy
disk I/O activity as a background. Including 3 times of
“thread switching” into the real-time thread in the worst
case, the worst latency was measured to be roughly 700
microseconds in 105 times of trials on a Celeron 300
MHz CPU [8]. It also includes the latency due to
disabling of interrupt by the Linux server. L4-Linux
can be configured so as not to allow the Linux server to
disable interrupts. If this option is enabled and the
number of context switching is reduced, the latency
may be reduced down to around 100 microseconds.

4.3 iocCore on L4-Linux

In order to confirm the ability of the system to run
iocCore, OSI-libraries for L4-Linux were implemented,
though this is not complete. Each of their functions
relies only on L4 system calls to preserve real-time
responsiveness, as far as it is supposed to be called
constantly from the iocCore threads. Some other
functions that create threads or semaphores issue Linux
system calls for resource allocation at a cost of losing
the responsiveness temporarily, assuming that they are
called only in the initialization sequences of iocCore.
Channel Access- related threads, however, rely on
Linux for TCP/IP socket services, and they work in
much the same way as they do on the standard Linux
kernel. Other than that, iocCore threads can run with
lower predictable latency under L4 kernel control.

5 CONCLUSIONS
 Though real-time tasks in the Linux kernel space

can ensure the lowest and most predictable latency,
running iocCore in the Linux kernel is an unfavorable
solution. On the contrary, an improved Linux kernel
gives the highest availability to iocCore, but its
responsiveness essentially remains at a soft real-time
level. If a platform allows threads in user-space to be
dispatched by a real-time kernel, it can provide iocCore
with not only an available basis, but also predictable
responsiveness. L4-Linux is one of the possible
candidates for this kind of approach.

REFERENCES
[1] http://www.aps.anl.gov/epics/
[2] http://os.inf.tu-dresden.de/L4/LinuxOnL4/
[3] http://www-online.kek.jp/~nakayosi/
[4] http://www.mvista.com/realtime/
[5] http://www.rtlinux.org/
[6] http://www.aero.polimi.it/projects/rtai/
[7] http://os.inf.tu-dresden.de/fiasco/
[8] J. Odagiri et.al., “Porting EPICS to L4-Linux

Based System, ” PAC 2001, Chicago, USA, Jun.
2001

Figure 1: Architecture of L4-Linux

L4 real-time micro-kernel

Linux
Server

User

Process

Real-
time
App.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

243

