
WEBI001
cs.OS/0111035

OPEN SOURCE REAL TIME OPERATING SYSTEMS OVERVIEW ∗

T. Straumann, SSRL, Menlo Park, USA

Abstract

Modern control systems applications are often built on top
of a real time operating system (RTOS) which provides the
necessary hardware abstraction as well as scheduling, net-
working and other services. Several open source RTOS
solutions are publicly available, which is very attractive,
both from an economic (no licensing fees) as well as from a
technical (control over the source code) point of view. This
contribution gives an overview of the RTLinux and RTEMS
systems (architecture, development environment, API etc.).
Both systems feature most popular CPUs, several APIs (in-
cluding Posix), networking, portability and optional com-
mercial support. Some performance figures are presented,
focusing on interrupt latency and context switching delay.

1 INTRODUCTION

Apart from hard-real time interrupt handling and schedul-
ing services, there are other OS features of interest, such
as the available APIs, target CPU architectures and BSPs
(board support packages), support for multiple processors,
networking, file systems, dynamic object loading, memory
protection and so on.

Other important issues are licensing terms, development
environment and debugging tools and the availability of
these tools for specific host platforms.

The next section gives an overview of RTL and RTEMS
looking at some of these issues. In section 3, some perfor-
mance measurements are presented comparing the results
for RTL and RTEMS to a commercial system (vxWorks).

2 RTLINUX AND RTEMS OVERVIEW

2.1 RTLinux

General Information RTL development started at the
New Mexico Institute of Mining and Technology and is now
maintained by FSMlabs Inc. which also offers commercial
support. The basic mechanism is protected by a US patent;
RTL (having a license for using the mechanism) itself is
licensed under the terms of the GPL.

RTL is distributed as a patch against certain versions of
Linux and a collection of kernel modules.

Further information about RTL is available at [1].

∗Thanks to Ric Claus for kindly borrowing me the MVME2306 com-
puter

System Architecture The basic idea of RTL is striking
simple: A slim layer of software is “hooked” into standard
Linux’ interrupt handlers and interrupt enabling/disabling
primitives, thereby effectively taking over the machine
which is then managed by a special real-time scheduler.
Linux continues to run as a low priority task.

The real-time core manages all hardware interrupts, dis-
patching them appropriately, either to Linux or to real-time
threads. The interrupt manager never allows Linux to dis-
able interrupts. Instead, Linux disabling an IRQ actually
invokes an RTL hook which marks the target interrupt as
“disabled”. If the interrupt manager detects such a marked
IRQ, it holds off dispatching it to Linux until the correspond-
ing call to re-enable the IRQ in question is intercepted.

Linux being a low priority task with no direct access to
the interrupt hardware implies that any real-time thread in-
troduced into the system can only very weakly interact with
Linux (through special communication channels) and may
only build upon the services of the RTL core, such as syn-
chronization primitives and the scheduler. Note that this
low-level environment does not provide a C or “math” li-
brary nor any of Linux’ standard system services like net-
working, file systems or drivers. While the former (C li-
brary) functionality is easy to add, providing the latter is far
more complex for obvious reasons. Communication with
user space processes is established through special “real-
time fifo” devices.

Following the philosophy of RTL, most of an application
should be implemented in user space, as ordinary Linux
programs. Only the real-time critical tasks go into a special
module which is loaded into kernel memory using Linux’
standard kernel-module loader.

API and General Features Version 3.1 of RTL offers
(a subset of) the POSIX (1003.13) “pthreads”, semaphores,
condition variables and a proprietary interface to the inter-
rupt subsystem. As already mentioned, no C-library is pro-
vided per-se. RTL special features include periodic schedul-
ing with high timing resolution.

While high timing resolution is certainly desirable, its
usefulness is reduced to some degree by the relatively high
latencies (see measurement section).

As a consequence of the layered system architecture with
Linux on top of the RTL core, an RTL application must be
carefully separated into real-time critical and non-critical
parts. Only the latter may use the powerful features of

235

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California



Linux, both in kernel or user space. Critical tasks must
not e.g. write files or access non-RT drivers but they must
delegate this work to non-real time code.

Supported Target Architectures RTL supports a sub-
set of the CPUs and platforms supported by Linux. x86,
PowerPC,Alpha and MIPS are currently supported by RTL;
at least on x86, SMP is supported.

Development Environment RTL development is usu-
ally done using the well-known GNU tool chain which has
been ported to a wide variety of host platforms. The RTL
core provides support for debugging real-time modules.

2.2 RTEMS

General Information RTEMS stands for “Real Time
Executive for Multiprocessor Systems”, where the original
meaning of the letter M, namely “Missile” and later “Mili-
tary” has eventually reached a civilian status.

RTEMS was developed by OaR Corp. on behalf of the
US DoD and is licensed under a GPL variant. OaR coor-
dinates development efforts and offers commercial support
for RTEMS and other related services.

RTEMS has reached production quality and is used by
military, industrial and scientific projects. EPICS, a control
systems software which is widely used in the accelerator
community, has been ported to RTEMS as of the new 3.14
EPICS release.

More information about RTEMS can be found at [2].

System Architecture RTEMS was designed as a true
RTOS from scratch, targeting embedded systems, possibly
with less memory. Consequently, various system compo-
nents are partitioned into separate modules (“managers” in
RTEMS terminology) which are linked to the application as
needed. The system can further be tailored to an applica-
tion’s specific needs by choosing appropriate configuration
parameters.

A typical RTEMS application is built by compiling the
application itself, which must provide the necessary con-
figuration parameters, and linking it to the desired RTEMS
managers (which are provided in libraries) thereby creat-
ing an executable for downloading to the target system or
burning into ROM etc.

Since RTEMS is an RT system “from the ground up”, all
system services and libraries are directly available to any
application task.

API and General Features RTEMS features POSIX
(1003.1b), ITRON and “classic/native” APIs in C and ADA
(native API only) language bindings. The usual com-
ponents of an RTOS are available, such as multitasking
(thread creation and control), synchronization primitives
(mutexes, semaphores, message queues, events etc.), sched-
ulers (fifo/round robin, rate monotonic), clocks etc.

RTEMS provides a port of the BSD TCP/IP networking
stack and supports multiple (possibly heterogeneous) CPUs.

As in vxWorks, memory protection is not available; the
system and application software share the same, flat mem-
ory space.

RTEMS itself does not ship a shell as powerful as vx-
Works’ nor does it offer a dynamic loader. However, there
are ongoing efforts of creating application programs pro-
viding the respective features.

The only file systems currently implemented are a remote
TFTP and a “in memory” (ramdisk) file system.

Supported Target Architectures RTEMS is designed
to be easily portable and consequently it supports many CPU
architectures, such as m68k, ColdFire, Hitachi SH, Intel
i386, Intel i960, MIPS, PowerPC, SPARC, AMD A29k and
HP PA-RISC.

Development Environment RTEMS uses the GNU
tool chain.

3 RESPONSE TIME PERFORMANCE
TEST

A key property of any hard-real time system is its “response
time”, i.e. the time it takes for the system to react to some
external event under worst case conditions. Two important
terms shall be defined here:

“Interrupt Latency” The time it takes from a device as-
serting an interrupt line until the system dispatching the
corresponding interrupt handler (ISR) shall be called
interrupt latency.

“Context Switch Delay” This term defines the time it
takes to schedule a task. It involves the scheduler de-
termining which task to run, saving the current task
context and restoring the new one.

Of course, it is practically impossible to find the worst case
conditions given the huge number of possible state combi-
nations that can occur in a computer system.

Therefore, a statistical approach is taken to create “worst
case” conditions. The idea is to let the system operate under
heavy load for some time while measuring the latencies.
The maximal delay recorded during the test is then assumed
to reflect the “worst case”.

3.1 Test Algorithm

A PowerPC 604 CPU (300MHz) on a MVME2306, PReP
compatible board by Motorola was chosen to perform the
measurements. BSPs for RTL, RTEMS and VxWorks were
available, allowing for comparison of the three systems on
the same target hardware.

The MVME2306 (like most PPC platforms) features
timer hardware with a reasonable resolution, which can be
set up to generate periodic interrupts. Because the running
timer is readable “on-the fly”, a precise measurement of
latencies can easily be accomplished.

236

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California



The test software package [3] consists of an initialization
routine, an interrupt handler (ISR) and a simple “measure-
ment” procedure.

The initialization code sets up the timer hardware, con-
nects the ISR to the respective interrupt and spawns a task
(MT) executing the measurement procedure at the highest
priority available on the system under test.

The ISR determines the interrupt latency by reading the
timer and notifies the MT by releasing a semaphore on which
the MT blocks. This causes the system to schedule the MT
(having become the highest priority runnable task), which,
reading the running timer is able to determine the time that
elapsed from the ISR releasing the semaphore until the MT
actually getting hold of the CPU. After recording the delay,
the MT again blocks on the semaphore.

This simple test was performed on a system heavily
loaded with low priority tasks, networking and serial I/O
traffic causing a large volume of interrupts (also at a prior-
ity lower than the timer hardware IRQ).

According to the definition, a hard-real time system must
guarantee that the latencies experienced by the high priority
ISR and MT stay below a certain hard limit, regardless of the
amount of low-priority load (note that interrupts inherently
have a higher priority than any normal task, hence a low-
priority interrupt still interrupts a high-priority task).

Hence, the maximal recorded latencies during the test
constitute a measure for the quality of a given system.

3.2 Results

The test was performed on the same hardware under the
RTL, RTEMS and VxWorks systems. 2’000’000 timer in-
terrupts were generated at a rate of 4kHz and the maximal
and average latencies were recorded. Measurements were
made under both, idle and loaded conditions.

The load that was imposed on the system under test con-
sisted of “flood pinging” its network interface from a host
computer, while letting a low priority thread copy characters
from a TCP socket (connected to the host’s “chargen” port)
to the serial (RS-232) console. Thus, the loaded system
was subject to heavy interrupt and kernel activity involv-
ing scheduling, synchronization primitives, networking and
driver code sections among others.

The results are shown in Tab. 1. The idle systems all
exhibit comparable figures. The situation changes, how-
ever, quite dramatically under load: Whereas RTEMS and
VxWorks show similar performance, RTL’s latencies are
substantially higher on the loaded system. This is not really
surprising given the far more complex interrupt dispatching
that is needed to manage and emulate the Linux interrupts.

Somewhat surprising is RTEMS’increased scheduling la-
tency when using the pthread API, as one would assume the
implementation to merely consist of an inexpensive wrap-
per to the native API. Given the good performance of the
latter, one can expect however, that making improvements
should be relatively straightforward.

As can be seen, the average latencies are about an order

Interrupt Latency Context Switching
max avg±σ max avg±σ

Idle System
RTL 13.5 (1.7±0.2) 33.1 (8.7± 0.5)

RTEMS1 14.9 (1.3±0.1) 16.9 (2.3± 0.1)
RTEMS 15.1 (1.3±0.1) 16.4 (2.2± 0.1)

vxWorks 13.1 (2.0±0.2) 19.0 (3.1± 0.3)
Loaded System

RTL 196.8 (2.1±3.3) 193.9 (11.2± 4.5)
RTEMS1 19.2 (2.4±1.7) 213.0 (10.4±12.7)
RTEMS 20.5 (2.9±1.8) 51.3 (3.7± 2.0)

vxWorks 25.2 (2.9±1.5) 38.8 (9.5± 3.2)

1using pthreads

Table 1: Latency measurement results. All times are in µs.
vxWorks and RTEMS use native threads unless otherwise
noted. RTL uses the pthread API.

of magnitude less than the respective maxima. Although
our statistical test gives some lower bound of the maximal
latencies, it is impossible to draw conclusions about the true
worst case figures which are obviously extremely difficult
to establish.

Usually, the interrupt handling parts of any system are
highly hardware-architecture dependent. Therefore, while
representative for the PowerPC, the interrupt latency fig-
ures stated here can not easily be generalized to other CPU
architectures.

4 CONCLUSION

RTEMS and RTL are two quite different open-source RTOS
solutions.

RTEMS seems to offer both, core features and perfor-
mance which are comparable to a commercial system like
vxWorks.

RTL could be interesting in situations, where the full
power of a desktop system is needed, enhancing such a
system by hard-real time features. This comes, however, at
the expense of higher latencies (compared to RTEMS or vx-
Works) and limitations of system services that are available
to the real-time tasks.

Finally, it should be noted, that the simple benchmark pre-
sented in this paper does by no means constitute a thorough
performance evaluation and comparison, an arduous task to
which the interested reader is encouraged to contribute.

5 REFERENCES

[1] http://www.rtlinux.com

[2] http://www.rtems.com

[3] http://www.slac.stanford.edu/∼strauman/rtoslat/

237

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California


