
WEAP034
physics/0111056

CONVERTING EQUIPMENT CONTROL SOFTWARE
FROM PASCAL TO C/C++

L. Hechler, GSI (Gessellshaft fuer Schwerionenforschung), Darmstadt, Germany

Abstract

The equipment control (EC) software of the GSI accelera-
tors has been written entirely in Pascal. Modern software
development is based on C++ or Java. To be prepared for
the future, we decided to convert the EC software from Pas-
cal to C in a first step. Considering the large amount of
software, this is done automatically as far as possible. The
paper describes our experiences gained using a Pascal to C
translator, Perl scripts, and, of course, some manual inter-
vention.

1 MOTIVATION

The EC software comprises the device representation layer,
the real-time layer, and the device drivers [1]. Except for
some assembler code, it has been written entirely in Pascal.

For embedded applications there are no integrated cross
development systems that currently support Pascal. The
system we use runs underVMS and its support expires com-
pletely by the end of 2001.

However until now we invested about 40 person-years in
developing and maintaining the EC software. A lot of spe-
cial know-how has gone especially into the real-time layer.
The functionality gained in this work must be preserved.

Future control system developments have to be imple-
mented with modern object-oriented methods. Appropriate
up-to-date tools are based on C++ or Java nearly without
exception.

Existing hardware (400 VME boards) must be used in the
future as well since it cannot be replaced completely due to
cost reasons. And, last but not least, the conversion must
not affect the day by day accelerator operation.

2 CONVERSION

We decided to convert the EC software from Pascal to C in
a first step. This allows us to “re-use” the software on one
hand and to establish a basis for re-engineering the control
system with modern methods and tools [2] on the other hand.

Considering that EC software consists of about 170 000
lines of code (LOC), comments not counted, it is clear that
conversion has to be done automatically as far as possible.

The basis for a conversion is EC software for one de-
vice class. There are 61 different device classes, each one
controlled by dedicated software. To ease the conversion,

we issued a cookbook [3] that describes the process step by
step.

To convert the Pascal code into C automatically we use
the Pascal to C translator p2c.1 Perl scripts are then used to
adapt the notation of identifiers to our style guide.

In spite of the automation there is a lot of manual inter-
vention required. Besides the preparations for p2c and Perl
there are four essential reasons that make manual interaction
necessary.

2.1 Compatibility of Data Structures

The p2c manual pages state that “most reasonable Pascal
programs are converted into fully functional C which will
compile and run with no further modifications”. This may
be true for stand-alone programs. Given the EC software,
it has to be taken into account that in case of communica-
tions with other modules, e. g. programs of the operating
layer, the structure of interchanged data has to be kept fully
compatible because those modules have not been changed.

1. Pascal supports PACKED records and arrays to facilitate
having minimal alignment space between elements. C does
not support this feature.

2. At GSI we use the Organon Pascal compiler from
CAD-UL which supports the dialect of the Oregon Pascal/2
compiler. Their syntax only differs in one key word, but they
generate completely different codes. However p2c makes
some assumptions about the generated code, e. g. the or-
der of bits in a bitset, which is crucial, for instance, when
hardware registers are accessed.

3. In Pascal the allocation size of an enumeration type
depends on the number of its elements. It may be one or
two bytes. In C the allocation size is always an int.

4. The Pascal string ARRAY [1..len] OF CHAR contains
len characters. Its allocation size in memory is len bytes.
A C string with equal size is char s[len]. It can hold only
len - 1 (printable) characters because of the terminating \0.

2.2 Linking of Pascal and C modules

A CPU of the device representation layer hosts EC software
of up to 12 different device classes. On this layer it must
be possible to combine modules written both in Pascal and
C because EC software for a number of device classes can
not be converted at the same time.

1p2c is part of many Linux distributions. It runs under VMS as well.

352

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California



Combining Pascal and C modules means that they have to
be linked together. In this case identical procedure calling
mechanisms have to be ensured.

1. P2c translates routine parameters into a structure that
contains a pure C function pointer and a “static link”, a
pointer to the parent procedure’s local variables. This struc-
ture is passed to the called function. Both of our compilers,
the Pascal as well as the C compiler, need plain C func-
tion pointers. The option to force p2c to use this concept is
available but does not work.

2. Pascal can handle conformant array routine parameters
defined as

f(a: ARRAY [lo..hi: INTEGER] OF MyType);

by syntactically passing the array as actual parameter
only:

VAR x: ARRAY [7..13] OF MyType;
f(x);

On calling the routine, the array, or its address in case of
a VAR parameter, as well as the lower and upper limit of the
array are pushed onto the stack. Thus the array bounds may
be checked by the called routine.

P2c generates C code where the routine is declared and
called with three parameters explicitly. The order the pa-
rameters are pushed onto the stack differs from that of the
Pascal compiler.

2.3 Maintainability

The converted software is not a final product. It has to be
maintained for changed or extended future requirements.
Therefore readable and comprehensible code is indispens-
able. To achieve this, sufficient work has to be invested into
simplifying and refurbishing the plain C code produced by
p2c and the Perl scripts.2

1. Pascal supports nesting of routines. The parent rou-
tine’s local variables lie in the scope of the nested routine. C
does not provide this concept. So p2c combines the parent
routine’s local variables to a single structure and adds an
additional link parameter to the subroutine’s parameter list
that points to this structure, thus allowing the subroutine to
access its parents’variables. C code designed like this looks
somewhat odd.

2. Pascal provides the WITH statement to abbreviate the
notation for references to fields of structured variables.

WITH struc.field DO subfield := 1;

P2c creates a pointer for every WITH statement with gen-
erated names WITH, WITH1, WITH2, etc. to access the field of
a structure.

T_field *WITH = &struc.field;
WITH->subfield = 1;

2Due to restricted space only some items are mentioned here.

Often there is no explicit type for the field the WITH state-
ment references. In those cases p2c needs to declare an ad-
ditional pointer type first (typedef struct T field ...)
before it can define the pointer itself.

These constructs are hardly found in common C pro-
grams.

3. Pascal allows the definition of an array of structures
within one statement. A variable definition looks like this:

VAR x: ARRAY [1..7] OF
RECORD i: INTEGER; c: CHAR END;

Although C supports a corresponding construct, p2c de-
clares a structured type before it defines the array.

typedef struct _REC_x {int i; char c} _REC_x;
_REC_x x[7];

To do so p2c must generate a name for the structured type,
which is REC x where x is the name of the array.

2.4 P2C Errors

We encountered only two substantial p2c errors not men-
tioned in the p2c manual. Both of them are very difficult to
detect since the compiler does not report an error. Overlook-
ing them during the manual intervention means they occur
during the runtime of the software where they are moreover
hard to debug.

1. In some cases p2c translates a Pascal 32 bit wide
unsigned integer type

TYPE uns_long = 0..16#FFFFFFFF;
myType = uns_long;

into a single C character type.

typedef char myType;

The error occurs only infrequently. Unfortunately we
were not able to reproduce the circumstances of its occur-
rence.

2. The Pascal pointer ptr should point to a 16 bit wide
type, e. g. a hardware register, that has an offset of 4 bytes
to a base address addr.

TYPE uw_p = ˆuns_word;
VAR ptr: uw_p;

addr: uns_long;
ptr := loophole(uw_p, addr + 4);

In rare cases p2c translates the pointer assignment to

ptr = (uns_word*)((uns_long*)addr + 4);

which results in a miscalculated pointer value. The ex-
pression (uns long*)addr type-casts addr to a pointer to
a 32 bit type and thus adding 4×4 = 16 bytes to the base
address instead of 4.

353

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California



3 APPLYING THE STYLE GUIDE

Unlike C, Pascal identifiers are case insensitive. P2c takes
the first occurrence of an identifier to determine the notation
of all subsequent occurrences. Mostly these notations do
not conform to our style guide. To force the notation of
identifiers according to the style guide, we developed some
Perl scripts that do most of the job.

A Perl script recognizes expressions for instance like

#define The_Answer 42
typedef struct my_type {...} my_type;

and recasts the identifiers accordingly (getting
THE ANSWER and MyType).

To handle more complex constructs, a parser-like script
would be required. This is not implemented yet. Thus
manual modifications are necessary whereby each identifier
has to be adjusted only once.

All changes of identifiers in the software of one device
class are then stored as key value pairs in a device class spe-
cific local data base (DB). The pairs describe the translation
from the old into the new style guide conform notation. The
creation and completion of the local DB is done by another
Perl script.

A third script is used to apply the translations stored in the
local DB to all identifiers in all files of a device class. Ad-
ditionally a global DB is used which applies the translation
of the identifiers of the system interface.

4 STATUS

Currently EC software for 15 different device classes has
been converted. Devices have been operated with the con-
verted software for more than 6 months. Some of them are
even in therapy operation [4]. Apart from teething problems
in the beginning of the conversion process the software has
showed good quality and bug fixing is an amazingly rare
necessity.

4.1 Time

To estimate the manual interaction effort to convert the soft-
ware for one device class the process can be split into 4
phases. The outcome is the following distribution:

1. p2c including some preparations 10%
2. manual intervention, part I 20%
3. Perl including building of local DB 20%
4. manual intervention, tests, bug fixing 50%

Phase 2 is necessary since some manual interventions
are better done before using the Perl scripts. Although 1
and 3 are the “automatic” phases they also need manual
actions, particularly phase 3. With more experience the
percentage of phase 4 increases but the overall conversion
time decreases.

On an average, EC software for one device class con-
sists of 2200 LOC. Its conversion requires us about 2

person-weeks. To convert the whole EC software consist-
ing of 170 000 LOC we will need approximately 39 person-
months or 3.25 person-years.

Without the help of p2c and Perl scripts we roughly es-
timate twice to four times the effort. There was only one
attempt to convert a device class completely manually.

Balzert [5] states that software development results in 350
LOC per person-month.

Given this, our method is 2 to 4 times faster than a pure
manual conversion and more than 10 times faster than a
redevelopment.

5 CONCLUSION

Using p2c and Perl scripts converting EC software from
Pascal to C is feasible without major problems. In spite of
the automation tools there is a lot of manual intervention
required before C software for a device class is ready to be
released.

Our method allows us to convert EC software in reason-
able time. Entirely re-engineering the EC software would
have exceeded our manpower capacity excessively.

With EC software converted to C we are well-prepared
to take the next step to C++ (or Java). It should be possible,
at least on the device representation layer, to re-use the C
functions, which are usually straightforward, as methods
of classes in C++. The use of C++ on the real-time layer
has to be investigated, particularly with regard to the highly
demanding 50 Hz linear accelerator operation.

6 ACKNOWLEDGEMENTS

Thanks to Peter Kainberger for all the Perl scripts, and to
him, Gudrun Schwarz, and Regine Pfeil for contributions to
the cookbook.

7 REFERENCES

[1] U. Krause, V. Schaa, R. Steiner, “The GSI Control System”,
Proceedings of ICALEPCS ’91, Tsukuba, Japan, 1991.

[2] U. Krause, “Re-Engineering of the GSI Control System”,
these proceedings.

[3] L. Hechler, P. Kainberger, G. Schwarz, “P2C - Umstellung der
Gerätesoftware von Pascal nach C/C++”, Accelerator Con-
trols Documentation U-GSW-08, GSI, Darmstadt, November
2000, http://bel.gsi.de/mk/sty/p2c.html.

[4] U. Krause, R. Steiner, “Adaption of a Synchrotron Con-
trol System for Heavy Ion Tumor Therapy”, Proceedings of
ICALEPCS ’95, Chicago IL, USA, 1995.

[5] Helmut Balzert, “Lehrbuch der Software-Technik: Software-
Entwicklung”, Spektrum Akad. Verlag GmbH, Heidelberg,
Berlin, Oxford, 1996.

[6] Dave Gillespie, “p2c - Pascal to C Translator Manual Pages”,
Caltech.

[7] Udo Krause, “C/C++ Style Guide”, Accelerator Controls
Documentation O-SIS-10, GSI, Darmstadt, December 2000,
http://bel.gsi.de/mk/sty/cstyle.html.

354

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California


