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Abstract 

From a controls viewpoint, contemporary high energy 
physics collider detectors are comparable in complexity 
to small to medium size accelerators: however, their 
controls requirements often differ significantly. D0, one 
of two collider experiments at Fermilab, has recently 
started a second, extended running period that will 
continue for the next five years. EPICS [1], an integrated 
set of software building blocks for implementing a 
distributed control system, has been adapted to satisfy the 
slow controls needs of the D0 detector by (1) extending 
the support for new device types and an additional field 
bus, (2) by the addition of a global event reporting 
system that augments the existing EPICS alarm support, 
and (3) by the addition of a centralized database with 
supporting tools for defining the configuration of the 
control system. This paper discusses the control 
architecture of the current D0 experiment, how the 
EPICS system was extended to meet the control 
requirements of a large, high-energy physics detector, 
and how a formal control system contributes to the 
management of detector operations. 

1 THE EXPERIMENT 
DØ is a high-energy physics experiment located at one 

of the two collision points of the 1 TeV proton/anti-
proton beam of the Fermilab accelerator. The detector is 
constructed from multiple layers of sensors: (1) a 
precision inner tracking section consisting of silicon 
microstrip cylinders and disks, (2) eight cylinders of 
longitudinal and stereo scintillating fibers, (3) a super-
conducting solenoid providing a magnetic field for the 
inner tracking layers, (4) an electromagnetic preshower 
section, (5) a liquid argon calorimeter, and (6) an outer 
muon spectrometer. The experiment has just commenced 
its second, extended running period that is expected to 
last until 2007.  

2 EPICS AND ITS EXTENSIONS 
Following the first running period, which ended in 

1995, the computing policy of the laboratory decreed that 
future experiment software must be developed from 
platform-independent components. Since the DØ control 
group was small and the period before the beginning of 
the next running period was short, recasting the existing 

slow-controls system in the new formalism was not 
practical. 

After a brief survey of the field, we selected EPICS 
(Experimental Physics and Industrial Control System) [1] 
to provide the building blocks for our new controls effort. 
The principal reasons for selecting EPICS were (1) the 
availability of device interfaces that matched or were 
similar to our hardware, (2) the ease with which the 
system could be extended to include our experiment-
specific devices, and (3) the existence of a large and 
enthusiastic user community that understood our 
problems and were willing to offer advice and guidance. 

One of the unique properties of the DØ detector 
interface is the use of the MIL/STD1553B serial bus for 
all control and monitoring operations with the detector 
and with the electronics components located in the 
remote collision hall. Since the detector is inaccessible 
for extended periods of time, a robust, high-reliability 
communication field bus is essential. We extended 
EPICS by providing a queuing driver for 
MIL/SRD1553B controllers and a set of device support 
routines that provided the adaptive interface between the 
driver and the standard EPICS process variable (PV) 
support records. Once these elements were in place, all of 
the features of EPICS were available for use with our 
remote devices. 

High voltage channel control is an example of 
extending the basic PV record support. In this case, 
building a compound device from individual PV records 
was not feasible because of the complexity of the HV 
device and the speed requirements. A generic high-
voltage record support module was developed based 
upon the extended, Harel state machine model [2]. The 
record support module provides the required, high-level 
behavior with (1) linear ramping with retries, (2) trip 
condition recovery, and (3) limits control. Device support 
modules then adapt the HV record to specific HV 
devices. Although developed for a specific device, the 
record support is non-device specific and may be used 
for other types of voltage generators that require a similar 
behavior. 

Using the EPICS portable channel access server, we 
have constructed gateways to two other control systems: 
(1) the SCADA-based DMACS system that manages the 
DØ cryogenic and gas systems and (2) the accelerator 
ACNET control system. These links are used for 
exchange of information only. 
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3 GLOBAL EVENT REPORTING 
Although the EPICS system provides an operator 

alarm display, alarms from slow controls are not the 
only, nor, necessarily, the most important events. To 
address this problem we have developed a separate 
facility, the Significant Event System (SES) [3], to 
collect and distribute all changes of state of the detector 
and the data acquisition system. 

Unlike the EPICS alarm facility, in which the operator 
display explicitly connects to each PV, the SES has a 
central server that collects event messages from sender 
clients and filters them for receiving clients. Each EPICS 
IOC connects to the server via a TCP/IP link and all state 
changes on that IOC, including alarm transitions, are sent 
to the server. For large physics detectors with hundreds 
of thousands of PVs, the savings in connect time at 
startup can be significant. 

The alarm class of SES messages receives special 
handling in the server. The SES server maintains the 
current alarm state of the entire detector so that receiving 
clients are able to obtain the current state when they first 
connect to the server. 

In addition to specialized receiving clients that may 
connect to the server, there are two standard clients: the 
SES logger and the operator display GUI. The logger has 
a pass-all filter and writes all messages to a disk file. 

In addition its monitoring and logging functions, the 
SES system provides the means for distributing 
synchronizing messages to other components of the 
online software system. For example, global control of 
the high-voltage system is accomplished by having the 
individual detector high-voltage programs connect to the 
SES server for messages that signal changes in the run 
state of the data acquisition system. 

The SES server and most of the receiving clients have 
been coded in the Python scripting language, while many 
of the sending clients are coded in C or C++. We 
anticipate that, for efficiency considerations, the server 
may require recoding in C++ at some later stage in the 
development cycle. API’s for SES clients are available in 
all three languages. 

4 CENTRALIZED DEVICE DATABASE 
The EPICS databases that configure the individual 

Input/Output Controllers (IOC) are flat, ASCII files that 
are read by the IOC’s during startup. The EPICS system 
additionally provides a higher-level construct, called a 
template, which is a parameterized collection of record 
definitions. Generator files, which reference the 
templates, supply the parameter values to produce 
instances of these templated devices. While these 
collections of files are adequate for EPICS initialization, 
they are not easily accessible to host-level processes that 
may require the same information. 

To address this problem, the DØ experiment 
centralized the relevant device information in a relational 
database (Oracle) [4] and provided a family of scripts, 
written in the Python language, to manage the 
transformation between the relational database and the 
EPICS, ASCII-format files. 

By providing scripts for bi-directional conversions, it 
is possible to edit collections of devices (instances of 
templated devices) by extracting the parameterized 
devices to a generator file, modifying the generator file 
with a text editor, and re-inserting the generator file into 
the relational database. For large collections of devices, 
this three-stage process is often simpler and faster than 
using a database editor directly. 

In addition to the database management scripts, a 
WWW browser interface to the relational database is 
available for initial definition and modification of the 
relational database entries. 

With control system device specifications now 
centralized in the relational database, they are easily 
accessible to other host-level processes. This, in turn, has 
led to a series of extensions to the original database 
schema to support the needs of other, controls-related 
processes. An example is the SES operator alarm display 
that accesses the central device database for obtaining 
guidance text and action scripts related to specific EPICS 
devices. 

5 DETECTOR CONFIGURATION 
MANAGEMENT 

One of the most complex tasks performed by the 
control system is the configuration of the detector for 
specific run conditions. The set of distinct configurations, 
both for normal, data-taking and for calibration runs, is 
very large; and, so, the usual technique of uploading a 
specific detector configuration, once the required 
conditions are established, and saving it as a file for 
subsequent downloading is impractical. 

For purposes of configuring the detector, it is 
structured as a tree with nodes at successively deeper 
levels corresponding to smaller, more specialized 
organizational units of the detector. The terminal nodes 
of the tree are, in nearly all cases, single instances of the 
high-level (templated) devices discussed in the preceding 
database section. The intermediate nodes of the tree 
primarily serve to organize the traversal order of the 
subordinate nodes since the detector is, in general, 
sensitive to the order in which devices are initialized. The 
terminal nodes, called action nodes, manage the 
configuration of a specific, high-level device. 

One level of intermediate node, the geographical 
sector, has a particular significance. These nodes, in most 
cases, represent the individual read-out crates of the data-
acquisition system and are the lowest level in the tree 
hierarchy in which the nodes are guaranteed to be 
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functionally independent. The load function for these 
nodes may be executed in parallel, significantly reducing 
the total time required to configure the detector. 

A single program, COMICS [5], coded in the Python 
language, manages configuration of the EPICS-
accessible part of the detector. The tree nodes, both 
intermediate and action, are specialized instances of a 
base node class, which defines most of the methods that 
characterize node behavior. The detector tree structure is 
defined by a set of configuration files that are Python 
program segments which instantiate instances of nodes. 

6 CONCLUSIONS 
Faced with the task of completely rebuilding the slow-

controls system of a complex, high-energy physics 
detector in a limited time, the DØ collaboration selected 
the EPICS system to provide the component parts from 
which the system would be constructed. EPICS, itself, 
has been extended to support a new field bus, and 
numerous experiment-specific devices. Our experience 
with EPICS in building the control system has been an 
overwhelmingly positive one, although, as with many 
distributed development projects, we found that the user 
documentation was often incomplete. 

By providing the Python scripting language with an 
interface to the EPICS channel access API, members of 

the DØ collaboration have been able to write nearly all of 
the operator interfaces to the experiment in a high-level, 
object-oriented language. Because Python is 
fundamentally object oriented and provides a number of 
high-level language constructs and because programs 
written in scripting languages tend to be significantly 
easier to debug, the development time for building the 
DØ online system was significantly reduced compared 
with what would have been required had the C++ 
language been used instead. 
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