
THDT002
cs.NI/0110065

INTERFACING THE CONTROLLOGIX PLC OVER ETHERNET/IP

K.U. Kasemir, L.R. Dalesio, LANL, Los Alamos, NM 87545, USA

Abstract
The Allen-Bradley ControlLogix [1] line of

programmable logic controllers (PLCs) offers several
interfaces: Ethernet, ControlNet, DeviceNet, RS-232
and others. The ControlLogix Ethernet interface
module 1756-ENET uses EtherNet/IP, the ControlNet
protocol [2], encapsulated in Ethernet packages, with
specific service codes [3]. A driver for the
Experimental Physics and Industrial Control System
(EPICS) has been developed that utilizes this
EtherNet/IP protocol for controllers running the
vxWorks RTOS as well as a Win32 and Unix/Linux
test program. Features, performance and limitations of
this interface are presented.

1 INTRODUCTION
Several subsystems of the Spallation Neutron Source

project (SNS) employ Allen-Bradley ControlLogix
PLCs [4]. To integrate these into the EPICS-based
accelerator control system, the EPICS input/output
controllers (IOCs) need read and write access to the
PLC data. Since the IOCs, their Unix or Win32 boot
hosts as well as almost every PC which is used to
program the PLC is already equipped with an Ethernet
interface, it is desirable to use the same technology for
transferring the PLC data. Existing support and
knowledge for cabling, network hardware,
configuration and maintenance can thus be utilized.

2 ETHERNET/IP
ControlNet is a deterministic serial communication

system, its specification extends from the physical to
the application layer of the seven layer ISO OSI
model[5]. ControlNet Release 2.0 [2] introduced the
TCP/IP encapsulation of data packages, replacing the
Physical and Data Link layer with Ethernet respectively
IP/UDP/TCP. The result was known as “ControlNet
over Ethernet” and is now called EtherNet/IP [6].

After connecting to an EtherNet/IP target, by default
on TCP/IP port 0xAF12, and establishing a session ID
via the encapsulation protocol, messages can be
exchanged. They are defined in the object oriented
Control and Information Protocol (CIP), part of the
ControlNet specification. In reference to the
ControlNet transport layer, one still distinguishes
“unconnected” and “connected” CIP messages. They

are encapsulated differently but can both be transmitted
via TCP, which – by definition – is always connected.

3 CONTROLLOGIX ETHERNET
INTERFACE

The ControlLogix PLC uses ControlNet to
communicate with local I/O boards over the back
plane, the 1756-ENET Ethernet module supports
EtherNet/IP. Following the EtherNet/IP specification,
one can use the SendRRData encapsulation command
and send this unconnected CIP message to the
interface:

Service: Get_Attribute_Single (0x0E)
Path: Identity Object (class 0x01, instance 1),
 Product Name (attrib. 7)

In response, the interface sends a reply:
Service: Get_Attribute_Single-Reply (0x8E)
Response: length=12, “1756-ENET/A ”
The CIP object model also includes “Analog Input

Point” (0x0A) and “Discrete Input Group” (0x1D)
objects, but so far our attempts to use these for
accessing ControlLogix analog or digital input modules
have failed. There is no standard CIP object that
suggests usability for accessing tag names on the PLC.

Instead, Allen-Bradley published new CIP service
codes specific to ControlLogix [3], including CIP path
names for ladder logic tags, service codes for
individual read and write access and combined
transfers as well as a binary data format used for these
transactions.

To send CIP extensions to the PLC with an
SendRRData encapsulation command, they have to be
routed via the Connection Manager object of the 1756-
ENET module, i.e. embedded like this:

Service: CM_Unconnected_Send (0x52)
Path: Connection Manager (class 0x06, instance 1)

 <encoded timeout>, <embedded message>
Path: Port 1(back plane), Link # (slot # of PLC).

This embedded message reads a tag named ‘TEST’:
Service: CIP_Read_Data (0x4C)
Path: ‘TEST’ (ANSI extended symbol segment)
Elements: UINT 1

On success the interface forwards the reply from the
PLC, the Connection Manager becomes transparent:

Service: CIP_Read_Data-Reply (0xCC)
Response: CA 00 00 80 38 3B = REAL 0.002815

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

481

The CIP_Write_Data service (0x53) allows
modification of tags on the PLC via similar embedding.

In contrast to other communication protocols, no
change to the ladder logic is required! The CIP
Read/Write services can access all controller tags with
no need to previously mark them as “published” or
“consumed” in the PLC programming software. This
includes access to I/O modules: The first channel of an
analog input module in slot 1 is available as
“Local:1:I.Ch0Data”.

This type of transfer is called explicit unconnected
messaging, because the tag name is explicitly
mentioned and each packet is individually routed. For
connected messaging, the Message Router on the PLC
is instructed to open a connection:

Service: CM_Forward_Open (0x54
Path: Connection Manager (class 0x06, instance 1)
<timeout, connection ID, update interval, …>
Connection Path: Port 1, Link 0 (back plane,
PLC slot), Message Router (class 0x02, instance 1)
The reply provides a serial number. The

CIP_Read_Data requests can now be sent as connected
messages with SendUnitData encapsulation, prefixed
by a sequence number, without embedding them in a
routing CM_Unconnected_Send message.

4 DESIGN DECISIONS
Unconnected messaging is used since the advantages

of connected messaging do not transfer from
ControlNet to EtherNet/IP: Ethernet does not reserve
bandwidth; guaranteed delivery is already handled by
TCP. For CIP_Read_Data requests, comparison of
connected to unconnected messaging resulted in
slightly smaller messages and a 3% increase in
throughput. As a drawback, the client application has to
send requests at the established update interval of the
connection or faster. Temporary Ethernet delays cause
the PLC to close the connection.

The ControlLogix Multi-Request Service (0x0A) is
used to combine CIP_Read/Write_Data requests until
either the total request or expected response size
reaches the PLC buffer limit of approximately 500
bytes. (Chapter 8.3.1.4 in [2] defines this as 511 bytes,
2-4.1 in [6] as 504 bytes).

5 IMPLEMENTATION OF EPICS
SUPPORT

For each PLC, the vxWorks driver code arranges the
tags in scan lists depending on the requested update
rate. One thread per PLC handles all read/write
requests.

EPICS device support allows analog, binary and
multi-bit records to use the driver for input and output.
Tags have to refer to a scalar value, a single array

element or a structure element, not whole arrays or
structures. The PLC data types BOOL, SINT, INT,
DINT and REAL are handled.

One can change the record configuration at runtime,
without rebooting the IOC, e.g. the tag name that a
record refers to can be replaced. In case of a
communication error or timeout, the driver disconnects
from the PLC and attempts periodic reconnects.

Per default, the driver combines requests for array
elements into one array transfer from the first to the
highest requested element. This leads to a significant
reduction in transfer times, but might have side effects:
The IOC will always write the whole array whenever
more than one element has been changed by output
records. If the same PLC array has been modified by
another source (PanelView display) since the last
transfer, the IOC is unaware of these changes and will
overwrite them. An array transfer is also size-limited
by the aforementioned PLC buffer limit. The record
configuration allows separate array element transfers as
a workaround for these cases.

For output records, the driver sends a
CIP_Write_Data message whenever the record is
processed. Otherwise it will periodically read the tag
from the PLC and update the output record if the value
on the PLC differs from the one in the record.

The driver keeps statistical information (error counts,
last/minimum/maximum transfer time) for each scan
list. Analog input records allow access to these values.

One problem arose with BOOL arrays since they are
transferred as DINT values. For an analog record, a tag
of “test [5]” is interpreted as addressing the 5th element
of tag “test”. When this is applied to a BOOL array, the
result would be the 5th DINT, containing bits 160-191.
So for binary records, all array access is assumed to
target BOOL arrays, and “test [5]” would be
transformed in a request to DINT[0], bit 5.

This software has been tested on 68K, PPC and
Pentium IOCs. The lower driver layer handles the
different byte order. In addition, a simple command-
line program is available for Unix and Win32 that
allows read and write access to PLC tags as a
debugging aid.

6 PERFORMANCE
For the following, an MVME2100 CPU with a

100baseT-network interface communicated to the PLC
with its 10baseT connection via a dual speed hub.
Another office PC and a Linux file server were
connected to the same hub. Network utilization was
generally below 2%.

On average, 11 milliseconds are required to transfer
a single tag, be it a scalar REAL, BOOL or DINT, an
array of 15 REAL or 352 BOOL values. Since the
EPICS driver combines multiple requests up to the PLC

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

482

buffer limit, about 15 tags, each with a 15-character
name, can be read in one transfer of about 20 ms while
the separate transfers would require more than 160 ms.

In an attempt to simulate a common application, an
IOC was configured with 352 binary input records,
scanning the elements of a BOOL array at 10Hz, and
120 analog input records, scanning three 40-element
REAL arrays at 2 Hz. Since Ethernet is not
deterministic, these transfer rates vary over time due to
collisions on the network, resulting in a transfer time
histogram as shown in Fig. 1.

Figure 1: Transfer times sampled over 3 days.

On average, the whole BOOL array transfer was

handled in 15ms, all REAL arrays were transferred in
25ms, so that the records could easily be updated at the
chosen scan rate.

In these measurements, the “System Overhead Time
Slice" of the PLC was set to 10%. After increasing it to
50% and connecting the CPU and PLC to a network
switch, the average times for a single tag are reduced to
7ms.

7 CONCLUSION
It is possible to use the published EtherNet/IP

specification together with the openly available Allen-
Bradley extensions to read and write tags on a
ControlLogix system.

The EPICS support is convenient to use. The record
configuration can be changed at runtime; transfers are
automatically combined up to the PLC buffer limit. In
contrast to other protocols, there is no need to define

the affected tags as “produced” or “consumed”, nor
does it require a network-wide assessment of timing
values for scheduling transfers as the original
ControlNet did.

Due to the nature of Ethernet, the exact transfer time
varies. A switched network topology will help
minimize variations. To reach the required throughput,
values of interest should be arranged in arrays. To keep
the ladder logic readable, intelligible tag names can be
used to alias the meaningless transfer array elements.

The published CIP service codes do not allow
browsing of PLC tag names and type information,
which would allow an even more user-friendly EPICS
driver.

With explicit messaging, each tag transfer is a round-
trip request. The tested version of the 1756-ENET
module does not support implicit messaging. Ideally
the IOC could subscribe to the tags of interest and from
then on receive asynchronous notification of changes or
at least periodic updates, eliminating the need to poll.

The current implementation, however, does already
allow for a successful integration of ControlLogix
systems into an EPICS environment

REFERENCES
[1] Rockwell Automation,, “ControlLogix Selection

Guide”, Publication 1756-SG001A-US-P from
http://www.ab.com, July 2000.

[2] ControlNet International, Ltd.,, “ControlNet
Specifications Release 2.0, Errata 2”, 2000.

[3] Rockwell Automation, “Logix5000 Data Access”,
Pub.1756-RM005A-EN-E from. www.ab.com,
March 2000.

[4] John K Munro, Jr., John C. Cleaves, Kay-Uwe
Kasemir, Ernest Williams, Delphy Nypaver, David
Meyer, “Use of EPICS for High-Level Controls of
the SNS Conventional Facilities”, ICALEPCS
2001, San Jose, November 2001.

[5] R. Stevens, “UNIX Network Programming”,
Prentice Hall, 1990.

[6] Open DeviceNet Vendor Assoc., “EtherNet/IP
Specification, Preliminary Release 8”,
http://www.odva.org, March 2001.

Work supported by the Office of Basic Energy
Science, Office of Science of the US Department of
Energy, and by Oak Ridge National Laboratory.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

483

