
THCT004
physics/0111068

THE CONTROL SYSTEM MODELING LANGUAGE

K. Zagar, M. Plesko, M. Sekoranja, G. Tkacik, A. Vodovnik
J. Stefan Institute, SI-1000 Ljubljana, Slovenia

Abstract

The well-known Unified Modeling Language (UML)
describes software entities, such as interfaces, classes,
operations and attributes, as well as relationships
among them, e.g. inheritance, containment and
dependency. The power of UML lies in Computer
Aided Software Engineering (CASE) tools such as
Rational Rose, which are also capable of generating
software structures from visual object definitions and
relations. UML also allows add-ons that define specific
structures and patterns in order to steer and automate
the design process.

We have developed an add-on called Control System
Modeling Language (CSML). It introduces entities and
relationships that we know from control systems, such
as “property” representing a single controllable
point/channel, or an “event” specifying that a device is
capable of notifying its clients through events. Entities
can also possess CSML-specific characteristics, such as
physical units and valid ranges for input parameters.

CSML is independent of any specific language or
technology and is generic such that any control system
can be described with it. Simple transformation scripts
map CSML defined structures to APIs and tools such
as EPICS, CDEV, SCADA, Abeans, and BACI and
generate the appropriate database or source files.

Advantages of control system development with
CSML are discussed on a concrete example of a
bending magnet’s power supply in a synchrotron
accelerator.

1 INTRODUCTION

1.1 Unified Modeling Language (UML)

The Unified Modeling Language (UML, [1]) is an
open industry standard for specifying, visualizing,
constructing, and documenting the artifacts of software
systems, as well as for business modeling and other
non-software systems. Now it is under supervision of
the Object Management Group, but it emerged in the
mid- ’90s as a confluence of several different software
modeling methodologies.

1.2 Computer Aided Software Engineering
Tools (CASE)

Nowadays, several tools are available on the market
to aid software engineering. Typically, these tools
allow the software developers to gather requirements,
visually enumerate and define the building blocks, and
allow forward and reverse engineering of the software
system. They typically employ the standard UML
notation.

We have used Rational Rose [2] as our CASE tool.
In particular, we have written an add-on extension for
Rose which generates XML representation of a CSML
description, and facilitates further transformation into
other software artifacts using XSL [6] (for details, see
section on generators).

1.2 Extensible Markup Language (XML)

Extensible Markup Language (XML, [3]) provides a
standard way to create structured textual documents.
The tree-like structure of a document is denoted using
markups (tags) embedded in the text. Today, XML is
becoming a widely accepted method of representing
data of all kinds, and is suitable for data transfer as well
as persistent storage.

Major advantage of XML is its ability to be
transformed into another XML document with a
different schema, or into a plain text or program source
code through the use of Extensible Stylesheet Language
(XSL, [4]).

As such, XML is the ideal storage for control
system’s data (the configuration database), as well as
meta-data (the description of the control system’s
structures and their relationships).

2 THE CONTROL SYSTEM MODELING
LANGUAGE

UML was designed to be applicable to a wide class
of software engineering applications, ranging from
construction of control system software to modeling of
business processes. Control System Modeling
Language ([5]), however, is a specialized dialect of the
Unified Modeling Language. As such, it uses the same
terminology and notation as UML.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

472

The following UML terms are commonly used in
CSML:

1 A class encapsulates data (attributes) and
behavior (operations). A power supply is an
example of a class, whose attribute might be
the current it produces, and whose operations
might be On and Off.

2 An object is a concrete instance of a class. For
example, the power supply of the 4th bending
magnet in a given synchrotron is an object of
the power supply class.

3 Associations describe relationships between
entities in the model.

Each of these entities can have several properties
assigned to it that define them. For example, every
class has a name, and every attribute has at least a
name and a type. One of the standard properties is the
stereotype, which is very useful for further
classification of entities. For example, some classes
might describe devices, whereas others could describe
state machines.

A control system may be described using CSML
regardless of whether it is based on EPICS, BACI or
other infrastructure. However, a different set of
generators must be provided for every target

infrastructure to enable automatic generation of the
artifacts.

2.1 CSML Concepts

All basic types in CSML must be declared before
they are used. In EPICS, an equivalent of the basic type
is the value type.

Characteristics are attributes of a basic type whose
purpose is to characterize the entity in which they are
contained. Because an entity’s character is static and
immutable at run-time, characteristics are usually
stored in the configuration database. The use of
characteristics is illustrated in Figure 1. Characteristics
are very similar to EPICS’ fields.

Especially in control systems it is crucial to be
capable of notifying interested parties whenever a
change occurs, for example to raise alarms when unsafe
conditions appear. Such notifications are accomplished
through the use of events. Events are equivalent to
EPICS’ monitors and alarms.

State machines model the state of devices
supervised by the control system. The state represented
by a state machine is influenced by values of attributes,
CSML properties, events and operations.

Individual observables in a control system, such as a
given temperature sensor’s readout, could be modeled
as simple UML attributes of a basic type, e.g., a double,
measuring the temperature in Kelvin. A better approach
is to introduce more complex types, properties, which
are stereotyped classes, and may provide support for
characteristics and events, as well as operations other
than get and set (Figure 1). Properties are equivalent to
EPICS’ records.

A device represents a physical device, e.g., a
vacuum gauge, a radio-frequency cavity or a power
supply. In CSML, a device is also a stereotyped class.
Usually, devices are composed of properties. For
example of a device, see Figure 2.

3 GENERATORS
We have designed an XML schema ([5]), which is

particularly suitable for storing control system
descriptions in XML format. Once the control system is
described in XML, it is possible to use Extensible
Style-sheet Language (XSL, [4]) transformations as
generators that produce:

• EPICS template and State Notation Language
(SNL) files.

• Schemas for XML-based configuration
database.

• User interfaces for manipulating individual
devices.

��������

��	
���
������ �
�������������������������
��	
���
�������
�������
�������������
��	
���
�������
�������
�������������
��	
���
�������
��������������������

��	
���
�������
�����������������������������
��	
���
�������
������������������������������������

��������������

 !�������

��	
���
�������
���������
��
�������������
��	
���
�������
���������
��
������������
��	
���
�������
�����������"�������������
��	
���
������ �
�����������"����� �������

��#��������������

 �����������

��	
���
������ �
���$������
��	
���
������ �
���%����

&����'������

��	
���
�������
����!���������������

���������'��

Figure 1: Interface to a read-only (RO) property of
type Double, and two classes implementing the same
interface. The Binary_Input class (an equivalent
of EPICS’ binary input) is implemented by reading the
desired value from hardware (e.g., an ADC converter),
whereas Random_Input just produces Gaussian
random values with a given average and standard
deviation (simulation).

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

473

In particular, we have implemented these generators:

1 Java source code for Java Beans representing
devices. These beans (Abeans) allow visual
composition of user interfaces for end-users of
the control system.

2 C++ source code for CORBA device servers,
linking the device drivers with the CORBA
middleware.

We have found that XSLT is excellent tool for
producing XML documents. However, generating text
files is more painful, as one is forced to balance
between the legibility of the XSL transform and the
resulting text file. To overcome this disadvantage, we
have decided to construct a language with all the XSL’s
strengths (processing of XML files, existing XSL-
related standards, …), while trying to correct the lack
of control over spacing, and add the ability to insert
custom user code in the generated output, and retain

these modifications after subsequent regenerations of
the output files. We called this language Extensible
Program Generator Language (XPGL), and the first
program generator using it is currently being
implemented.

4 CONCLUSION
CSML allows definition of the control system’s

structure in a single place. All dependent artifacts, such
as program source code, configuration database schema
and technical documentation can be generated from
that single source.

Because CSML is essentially standard UML, it also
serves as the blueprint for the control system. Not only
is it standardized, it also offers a visual, easy to
comprehend notation of system’s building blocks and
their relationships.

CSML’s one-to-one mapping to its XML
representation offers a starting point from which other
artifacts may be generated using standard tools and
leverages widely available knowledge of XSL.

REFERENCES
[1] Object Management Group (OMG), “Unified

Modeling Language (UML) 1.4 specification”,
September 2001. Available at OMG web site,
http://www.omg.org.

[2] Rational, “Rational Rose”,
http://www.rational.com/rose.

[3] The World Wide Web Consortium, “Extensible
Markup Language (XML) 1.0 (Second Edition)”,
October 2000, http://www.w3.org/XML.

[4] The World Wide Web Consortium, “Extensible
Stylesheet Language (XSL)”, May 2001,
http://www.w3.org/Style/XSL/.

[5] K. agar, IJS, “Control System Modeling
Language Specification”, October 2001. Available
at http://kgb.ijs.si.

[6] K. agar, IJS, “CSML Add-on for Rational Rose”,
http://kgb.ijs.si.

������

����
�		��

������

����������
�������

����������

�����������������

���
��
����������������������
�����
�����

����
�������

��
 ������!!

"��

���

"
������#

$� "%��
�������

&
����
��
�����

'�������

(�������

Figure 2: A ramped power supply (RPS) device. A
ramped power supply implements a
Ramped_Power_Supply interface, which inherits all
attributes and operations from a Power_Supply, but
adds a reference to another device that provides it with
heartbeat required for synchronized ramping. A regular
power supply already contains a writable double
property for setting the current, and a read-only
property for reading out the actual current.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

474

