
THAP075

SOFTWARE DESIGN CONCEPTS FOR ARCHIVING AND RETRIEVING
CONTROL SYSTEM DATA♣

C.A.Larrieu, M.H.Bickley, TJNAF, Newport News, VA 23606, USA

♣ This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150

Abstract
To develop and operate the control system

effectively at the Thomas Jefferson National
Accelerator Facility, users require the ability to
diagnose its behavior not only in real-time, but also in
retrospect. The new Jefferson Lab data logging system
permits the acquisition and storage of enough data to
provide suitable context for such analyses. In addition,
it provides an extraction and presentation facility
capable of efficiently fulfilling requests for both raw
and processed data. This paper discusses some of the
design goals and implementation decisions involved in
the development of “CZAR”, the Channel Access
Zippy Archiver. Among these are: extensibility and
maintainability via object-oriented and compartmental
design, reliance upon a relational database system for
storing configuration and data summary information,
integrated support for common statistical and filtering
transformations in the Application Programming
Interface (API) which developers use to access logged
data, and the use of CORBA to facilitate deploying the
system in a heterogeneous environment.

1 GOALS
The design of the Jefferson Lab archiving system

follows from two primary goals: foremost, that it fulfill
the operational needs of Jefferson Lab; secondly, that it
benefit other members of the EPICS collaboration
either in part or in toto.

1.1 Data Acquisition

Ideally, a control system archive should contain all
the information necessary to construe an accurate
representation of the state of system parameters at any
time in the past. For a digital control system, one way
to achieve this goal is to acquire and store every value
of every control point at every discrete instant in time.
Unfortunately, such a strategy does not scale well: as
the number of control parameters and the rate at which
they change increases, performance requirements
unavoidably begin to strain network and storage
capabilities.

A more practical approach is to gather and store only
those data which contribute significantly to the state of

the control system at any particular time. But this
technique also poses a problem, since the importance of
certain parameters may vary depending upon context
within the control system.

The CZAR provides an infrastructure which gives
system experts as much fine control as possible over
how and when the engine should gather and store
specific machine parameters. It does so by delegating
data acquisition tasks to DAQ modules. If one of the
standard DAQ modules does not provide sufficient
control, a C++ developer can create a new module with
relatively little work.

1.2 Data Retrieval

In order to benefit from having stored control system
data, users require the ability to examine it in some
useful fashion. Typical uses for such data include
correlating values in time, searching for trends,
generating status audits, etc. These activities may occur
interactively or batched. For example, an expert may
browse through archived data while debugging a
system, whereas another user may wish to generate
periodic reports summarizing pertinent characteristics
of the control system over a certain time range.

By providing a data retrieval API which incorporates
standard data transformations, the Jefferson Lab
archiver simplifies the task for developers who wish to
create tools for interacting with the archived data.
Furthermore, by providing this functionality in a library
built on top of a narrowly defined archiver access API,
it becomes available to other laboratories who wish to
implement the portability layer on top of their own
archiver instead of using the CZAR.

1.3 Usability

An important, but often neglected aspect of software
design is consideration of how users interact with it.
One significant design goal of this archiving system is
to provide simple user interfaces for managing all
aspects of its operation. All components of the CZAR
system incorporate built-in support for user feedback
via a C++ interface which provides virtual methods for
informing the user of the current task stack and activity

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

620

level, as well as the overall progress towards its
completion.

Defining CORBA interfaces to the major
components of the system facilitates the task of adding
platform-independent distributed interfaces as the need
arises.

2 IMPLEMENTATION
The entire archiving system actually consists of

several distributed components:
1. A relational database which stores configuration

information and archive “metadata”.
2. A data acquisition engine which gathers real-

time control system data and caches it in an
intermediate staging area on the filesystem.

3. A daemon process which controls the engine,
and periodically converts staged data into a
compressed long-term storage format.

4. A server process which fulfills requests for
history data.

5. A graphical interface for inspecting and editing
the archiver configuration.

6. A Client library for accessing and manipulating
stored data, and associated end-user tools.

2.1 Relational Database

Common practice, especially in UNIX environments,
has traditionally favored storing configuration
information in plain-text files, the primary motivation
being to ensure easy access to the data via text editors
and file-system utilities. But this technique requires
either exporting the file-system or developing a special-
purpose server to share information with distributed
components. By using a database, we gain network-
transparency in a fairly standard fashion. The database
also helps to ensure data consistency by synchronizing
access from distributed components.

With the exception of the actual data points acquired
from the control system, CZAR stores all of its
information in a relational database (currently
MySQL). This information includes the network and
file-system location of archive processes and data,
start-up options, data acquisition specifications, and
administrative information.

The database also stores summary information for
logged data, including data acquisition begin and end
times, number of points, data format, file name, and file
status. It stores Channel Access control information
(data type, engineering units, alarm limits, etc.) for
every logged signal, and maintains a connection history
for each. It provides a fast directory into the file
system for finding the actual data for a specific signal
and time range. We chose not to store the actual logged
data in the database because doing so might exceed
database table limits and would complicate the task of

transparently shuffling data from on-line to off-line
storage (i.e. from local file-system to tape silo).
Furthermore, accessing binary data from the file system
is more efficient than accessing it via the database.

In general, our strategy has been to use the database
for those tasks to which it is well-suited, capitalizing
upon its inherent suitability for use in a distributed
system.

2.2 Data Acquisition Engine

The data acquisition engine runs as a child of a
daemon process, and is controlled by its parent via
pipes (to be reimplemented with CORBA). When the
engine is activated, it retrieves from the database the
list of all signals to log. For each of these, it then
retrieves the data acquisition specifications, also from
the database, finds the appropriate DAQ module by
name, and then dispatches responsibility to the
appropriate object which can either be a compiled-in
object, or a dynamically-loaded shared object module.

The two standard, compiled-in, data acquisition
modules implement the “monitor” and “trigger”
techniques. The former captures every change of its
associated signal which occurs outside a specified time
interval. The latter allows changes in certain “trigger”
signals to initiate a countdown timer which will cause
the buffers for dependent signals to flush. By
specifying a suitable buffer size and delay time, a user
can capture the state of various control points for a
period before and after some event. This can be quite
useful in diagnosing machine behavior.

To implement a new module, a programmer must
create a derived class of a generic DAQ module parent
class, implementing several virtual methods which
allow interaction with the user at configuration-time
and control by the engine at run-time. While the
process is fairly simple, it does require that the
programmer understand how to capitalize upon the
facilities which the engine provides, such as interval
timers, asynchronous event handling, channel access
ring buffers, and the output subsytem.

All output is written to a pair of files. One of these is
an index into the other. Whenever a data buffer for a
signal is committed to disk it is first written to the data
file and then indexed in the index file. This approach
lends the system a modicum of fault-tolerance. If the
engine should terminate for some reason (e.g. machine
reboot, run-time exception), the possibility of the
output data becoming corrupt depends upon the
possibility that an index entry becomes corrupted,
which is quite unlikely. When the data file reaches a
pre-defined size, the engine creates a new file pair and
redirects all subsequent output. The list of files created
by the archiver engine is enumerated in a log file in the
output directory. This file also stores information about

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

621

engine run-time eents, such as when and how the
engine is started and stopped.

2.3 CZAR Daemon

The process which activates and deactivates the data
acquisition engine also periodically converts the
engine’s output data into a more efficient long-term
storage format, updating the data summary information
in the database. Because the original output format is
designed for fast output and fault-tolerance, it contains
a good bit of redundant information which the
conversion process discards. The converter also
performs some simple compression during its
operation, which generally yields between 50% and
75% reduction is storage requirements.

2.4 History Server & Client API

The server process also runs as a child of the CZAR
daemon. It accepts requests for specific ranges of data,
loads the corresponding data from the filesystem, then
returns it to the client. It also accepts and acts upon
requests to convert portions of data from stage format.

Centralizing access to the data reduces the amount of
specialized knowledge client applications need in order
to retrieve archive data. Standard data reduction and
transformation operations implemented at the server
can also yield a net performance gain, especially if the
resulting data set is smaller than the input data set. For
example, if a client wishes to average a year’s worth of
data, the server can perform the averaging and return
the summary, instead of sending all of the data over the
network.

The client API is comprised of several layers. At the
lowest level it consists of the collection of classes from
which the engine is built. In order to coalesce this
somewhat disorganized set of objects and methods into
a coherent interface, CZAR implements the
“CADataStore” interface [1], which is intended to
encapsulate the essential capabilities of any repository
of channel access data. As such, it represents a simple
portability layer between client applications and the
archive data storage system.

 2.5 Configuration Editor

This is a Java application which uses JDBC to
communicate with the database, and which presents the
user with tools for manipulating the archiver
configuration. Specifically, it allows for changing the
DAQ specs for groups of signals, adding new signals,
deactivating old signals, changing administrative
groupings, creating new groups, etc.

The standard transform and data manipulation library
is built upon the CADataStore interface, and provides

access to common statistical and filtering operations.
For example, it implements binning and interpolating
operations for reducing data at the server. By providing
these routines as part of the access API, we hope to
simplify the task of developing intelligent client
applications.

3 REMAINING WORK

4.1 CORBA

Currently, the distributed components communicate
via a simple TCP/IP protocol. They will be modified to
rely upon CORBA, which will in turn yield several
significant advantages. First, they will no longer be
architecture dependent, since CORBA handles data
type conversions between native formats. This in turn
will facilitate distributing the components among
heterogeneous machines. Specifically, it will facilitate
the development of a Java-based data analysis tool.

4.2 Platform Porting

So far, all development and testing has transpired in
an HP-UX 11 environment. Once the system has
reached release quality it will be ported to Linux and
possibly Solaris.

4.3 Specialized Compression

Currently, the permanent storage format uses the zlib
compression library to code chunks of data. While this
results in typically around 50% compression,
preliminary research indicates that a specialized
algorithm using adaptive and predictive arithmetic
coding [2] will reach about 95% compression. This is
significant because we are currently constrained by
limited storage capacity.

ACKNOWLEDGEMENTS
Many of the design requirements and

implementation issues discussed in this paper arose
from discussions with various members of the EPICS
collaboration, especially Bob Dalesio and Kay Kasemir
at Los Alamos.

REFERENCES
[1] C.A. Larrieu, “EPICS History Server”,

http://www.jlab.org/~larrieu/work/History/history.
html.

[2] C.A. Larrieu, “Compressing Control System Data
at Jefferson Lab”,
http://www.jlab.org/~larrieu/work/Compress/paper
.ps

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

622

