
THAP062
physics/0111112

* Work performed under the auspices of the U. S. Department of Energy

DESCRIPTION OF THE RHIC SEQUENCER SYSTEM

T. D’Ottavio, B. Frak, J. Morris, T. Satogata and J. van Zeijts *
Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

The movement of the Relativistic Heavy Ion Collider
(RHIC) through its various states (eg. injection,
acceleration, storage, collisions) is controlled by an
application called the Sequencer. This program
orchestrates most magnet and instrumentation systems
and is responsible for the coordinated acquisition and
saving of data from various systems. The Sequencer
system, its software infrastructure, support programs,
and the language used to drive it are discussed in this
paper. Initial operational experience is also described.

1 INTRODUCTION
Automating collider operations using a sequencer is

not a new idea. Fermilab has built and used a sequencer
for years [1], and CERN has a sequencer in use for
LEP.

When RHIC was built at BNL, the construction of a
sequencer was never in doubt. A prototype sequencing
program was first used when RHIC was turned on and
commissioned in the year 2000. Since then, a major
effort has gone into building and using a sequencing
system for both RHIC and injector operations at BNL.

Expectations for the sequencing system were what
one would expect from any automation tool –
improvements in execution times, minimization of
errors, consistent playback of procedures, and easier
and more automated diagnostics.

This paper will describe the overall sequencing
infrastructure that is now in place and how the various
pieces are used to sequence procedures at BNL.
Additional information on the design and development
of the main sequencer GUI pictured in Figure 2 has
recently been published [2].

2 SYSTEM DESCRIPTION
An overview of the different pieces of the

sequencing system is shown in Figure 1. The system is
comprised of the sequences, sequence creation and
editing tools, two GUIs that allow users to see the
possible sequences and run them, support servers which
run specialty code and allow other applications to run
sequences, and a message logging system used to
record sequence progress and aid in diagnostics.

Sequences, Language and Editing. The sequences
are the heart of the system – the common link that ties
all of the pieces together. Sequences describe the tasks
to be performed in a linear sequence of steps. Each line
in the sequence is either a primitive task (i.e. set a
value, trigger an event, etc.) or a call to run a different
sequence. This nesting capability adds a great deal of
flexibility to the system and has led to a more modular
and smaller set of needed sequences. See the “ramping
up” example in Figure 2.

Sequences are ASCII files and, therefore, can be
edited by any text editor if desired. An alternative
method, using a program called TreeBuilder, permits
point and click construction of a sequence by selecting
from a list of available tasks and input variables for
each task.

Sequencer GUIs. Parallel development of a GUI to
run sequences by the Physics and Controls groups led
to the development to two sequencer GUIs. The one
developed by Physics, called Sequencer (Figure 2) is
the main sequencer used to run the RHIC accelerator. It
is written in the tcl/tk language and can read and run
files in the sequencer language mentioned above.
Alternatively, it can issue commands to the Sequencer
Server (see below) or run shell scripts. Messages and
errors are displayed in an internal message window and
stored by the cmlog Server. More information on the
Sequencer program is available [2].

A second sequencer GUI called tape (Tool for
Automated Procedure Execution) is an alternative C++
based sequencer front-end. It has been used by Controls
to run sequences containing custom C++ tasks for items
like quench recovery and particle mode switching.
Figure 3 shows tape with the quench recovery sequence
loaded. Sequences run here can also be run by the main
Sequencer via the Sequencer Server if desired.

Support Servers and Programs. Two servers were
constructed to support the sequencing system – the
Sequencer Server and the Launch Server. Both servers
use the CDEV protocol [3] to communicate with their
clients. The Sequencer Server is dedicated to running
commands from the Sequencer GUI, which may use
the server to run a custom task written in C++ or a CPU
or time intensive task that can reasonably be run in the
background.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

597

Sequencer Server

Sequencer (Figure 2)

cmlog Server

cmlog Browser

tape (Figure 3) TreeBuilder

Text Editor

Launch Server Launch Task

Applications

Sequences

ToolTalk

CDEV

CDEV

CDEV

CDEV

ToolTalk

Figure 1: The components of the RHIC Sequencing System include the sequencer GUIs, support servers, sequence
creation and editing tools and the sequences. See the text for a description of each component.

Figure 2: This is the main sequencer used for RHIC operations. It is shown here displaying the RHIC::Ramp::Up
sequence, which ramps RHIC from injection energy up to maximum storage energy.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

598

The Launch Server was designed to service requests

to run sequences from any client. This gives any
application the ability to run a sequence. The server can
handle simultaneous requests by spawning off a process
to handle a sequence. The ToolTalk communication
protocol is used for this purpose.

Message Logging. Messages and errors from the
Sequencer GUI and from the Launch Server are sent to
the cmlog Server [4], where they are stored and
available for viewing from the cmlog Browser, which
provides custom GUI displays and querying
capabilities. The tape program has its own message
logging and display system.

Figure 3: tape is an alternate sequencer GUI shown
here after running a quench recovery sequence.

3 OPERATIONAL EXPERIENCE
The sequencing system described here has been used

heavily during the first year of RHIC operations. As
can be seen from the tree of sequences shown in Figure
2, a number of sequences have been created for setting
up and checking instrumentation and power supply
systems, for ramping and moving through the various
states of the collider, and for system recovery and
preparation. The sequencing system has been a key
contributor to operating RHIC in an efficient and
reproducible way and has generally been quite reliable.

One unexpected benefit of developing this system is
that it is now being used to automate procedures that
have, in the past, been done manually by the Operations
staff. In many ways, the sequencer system is now
considered a general-purpose automation tool available
for a wide variety of automation purposes that might
have been handled in the past by custom coding.

4 FUTURE WORK
Future work will involve enhancements designed to

address limitations in the current system. The
sequencer language is currently limited to describing
the sequential execution of tasks. Under consideration
are enhancements to permit parallel execution and
simple if/then/else logic. Code of this nature can
currently be executed only within custom code
executed on a single line of the sequence.

Enhanced diagnostic capabilities when errors occur
during the running of a sequence are also being
pursued. Currently, the sequencer GUI highlights a line
in the sequence if it encounters an error. The user must
then gather the available diagnostic information and
determine how to proceed. This process is being
automated so that diagnostic information and
recommendations are available to the user at any error
point in the sequence.

REFERENCES
[1] J. Annala, “The Fermilab Sequencer - Use in

Collider Operations”, proceedings of ICALEPCS
1995, Chicago.

[2] J. van Zeijts et. al., “The RHIC Sequencer”,
proceedings of PAC 2001, Chicago.

[3] W. Akers “An Object-Oriented Framework for
Client/Server Applications”, proceedings of
ICALEPCS 1997, Beijing.

[4] J. Chen et al., “CMLOG: A Common Message
Logging System”, proceedings of ICALEPCS
1997, Beijing.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

599

