
THAP026

THE USE OF WIZARDS IN CREATING CONTROL APPLICATIONS

Philip Duval, DESY MST, Hamburg, Germany
Vladimir Yarygin, IHEP Protvino, Russia

Abstract

In modern times control systems are becoming more
complex at the same time that control groups are
tightening their belts and staff are consisting of fewer
and fewer people. Hardware specialists and machine
physicists (and not computer scientists!) are frequently
being called upon to develop and maintain control
system applications. There are at least three
approaches a control system engineer can take to make
life easier for such developers: 1) ‘No programming’ -
servers are database driven, clients are wide-interface
or widget driven. 2) ‘Do it yourself’ - developers must
be able to use an application programmer’s interface
(API) and know how to program in the designated
language 3). ‘Wizard based’ – developers enter
application criteria into a ‘wizard’ which produces code
(i.e. a project), which can run as is and/or be used as a
starting point for further development. We report here
on the third approach in the context of the TINE control
system at DESY. The TINE server wizard will be
presented, which generates server-side projects in C or
Visual Basic. The TINE client wizard will also be
presented, which generates client-side projects in
Visual Basic, Java, and DDD (DOOCS Data Devices).

1 INTRODUCTION
Consider the following two cases.
One: An existing front-end data acquisition system

needs to be integrated into the control system. If the
control system is of the “no-programming,” database-
driven variety, then the data-acquisition system either
needs to be a “perfect fit” or the control system
engineers might have to invest considerable time
matching device drivers, IO addresses, control
algorithms, command structures, alarm information,
archiving information, etc. to the database. If the
control-system is of the “do-it-yourself” variety, then
the control system engineers will have to understand
how to integrate what already exists into the control
system (with possibly the same investment in time) or
they can present the engineer responsible for the data
acquisition system with the control system API and ask
him to integrate it.

Two: A machine physicist wants to write a diagnostic
application. He knows what control system data he
wants to use and he wants to be able to combine and
manipulate the data in various ways. Widget-driven
tools are more than likely useless, unless they do

exactly what the machine physicist had in mind. The
machine physicist must then present his wishes to the
control system staff and hope that something will
happen, or he must himself be able use the control
system API on some platform he can understand.

In the cases above, the hardware engineer and the
machine physicist might be willing to use the control
system API themselves as long as the “learning curve”
is shallow or non-existent, tantamount to producing
results quickly. Indeed, the control system staff itself
will welcome any tools which increase productivity.

Ideally, the non-specialists would not have to learn an
API at all. Rather, the desired functionality could be
achieved by answering friendly questions in a setup
wizard, which would create the interface (generate the
code) needed for the platform in question. The
specialists likewise tend to welcome such setup tools,
as they provide a head start in application development
(the alternative typically being to copy code from
working examples and editing it into something
relevant).

Finally, consider the following case.
Three: A comprehensive console application exists,

covers all the needs of the operators, machine
physicists, and engineers. However, as it was written
in Visual Basic it cannot run on non-windows platforms
and is therefore not available to Controls Group B, who
use Linux machines as the standard console platform.

If the above application is wished say as a Java
application, then either the control system staff must
rewrite it or regenerate it.

Here too there is an ideal situation. Namely, if the
application in question exists as a “meta-application”
(such as an XML-file containing the information and
instructions needed to render the application) then
converting it to Java (or C++, or HTML, etc.) becomes
trivial if there is a “renderer” capable of transferring the
XLM instructions into code. Indeed, the (meta-)
application becomes separated from its many different
“views,” be they console programs, interactive web
pages, voice-applications using Voice XML, etc.

Below we shall describe the current status of the
TINE server wizard and TINE client wizard in use at
DESY. For more detailed discussion on the TINE
control system, please see reference [1] as features of
the control system will be only briefly mentioned in
this article.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

537

2 TINE SERVER WIZARD
TINE is object-based to the extent that device servers

offer front-end information in the form of properties
and devices. TINE properties can be read-only, write-
only, or read-write and should be thought of as
corresponding to methods (perhaps get/set methods) as
in some cases (e.g. property “initialize”), data need not
be exchanged at all. All properties are available via a
variety of data access methods.

The current TINE server wizard addresses only the
basic server functionality and not hardware IO. The

goal is to present the server developer with a setup tool
where he can input the functionality the server is
supposed to have. The generated project will not have
information as to the hardware IO and therefore
contains numerous “TODO” statements at strategic
locations in the code. Until the developer modifies the
code to interface to the real hardware, the data
generated for the properties will be simulated. As an
example consider the input parameters shown in figure
1 below.

Figure 1: TINE Device Server Setup Wizard with example input.

The wizard selections above will generate either a C
project and/or a Visual Basic project (LabView and
HPVEE projects will be offered in the next release). A
fragment of the generated C project is shown below in
figure 2. In this case a generated make file will
immediately build a server executable, which will
happily deliver simulated data. Using this code as a
starting point, the developer can quickly see what he
needs to do to interface his hardware data.

The TINE server wizard is currently a “one-pass”
wizard. This means that there are no “markers” within

the generated code which separate the “hands-off”
regions from the code sections the developer is allowed
to change.

The code generation process consists of supplying the
information as shown in figure 1 through a dialog
process. This dialog exists as either a VB program or a
TCL script. The dialog then generates an intermediate
repository. The server wizard uses the TINE
“exports.csv” [1] file as repository, since it is itself
useful following the code generation. The repository is
then rendered into the desired language.

Figure 2: Sample of generated C code give the settings shown in Figure 1.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

538

3 TINE CLIENT WIZARD
Generating server code essentially boils down to

providing functionality without worrying about visual
components or user-interface dialogs. Not only are
console programs visual and have a user interface, but
apart from the most trivial cases they tend be
specialized. Nonetheless, one has the same goal of
supplying design criteria to a client setup wizard, which
will generate a client-side information repository to be
used to generate (i.e. render) client projects (or even
running programs) for the specified platform. In this
case, a .csv File is not at all suitable as a repository.

There is already much enthusiasm for wizard-driven
user-application development. Two such specifications
have been examined for use in the TINE client wizard,
namely GLADE [2] and UIML [3]. Both of these
make use of XML as information repository. The
TINE client wizard is still under development. We can
say here that the UIML specification seems most
suitable for rendering client-side control system
applications, as it has a methodology for handling
events and actions. The specification for dealing with
the “usual” visual toolkit component objects (i.e.
buttons, labels, list boxes, etc.) is already well thought
out. It remains to supplement it with data access, and
“charting” components (such as ACOP [4] in the VB
world). Note that UIML is XML.

Currently we are using a data access specification
exemplified by the following UIML snippet:

<peers>
 <logic>
 <d-component id="TineTest"
 maps-to="UIMLRenderer">
 <d-method id="GetData"
 return-type="string"
 maps-to="GetData">
 <d-param id="DevServer" type="string"/>
 <d-param id="DevName" type="string"/>
 <d-param id="DevProperty" type="string"/>
 <d-param id="DataFormat" type="string"/>
 <d-param id="DataSize" type="string"/>
 <d-param id="Timeout" type="string"/>
 <d-param id="DrawMode" type="string"/>
 </d-method>
 ...

UIML renderers, which parse the UIML and generate
the necessary code, are commercially available
(Harmonia [5] offers renderers for Java, HTML, and
VoiceXML for instance). However they are not
generic enough to offer graphical display and data
access on the one hand or to offer cross over
renderering to other language groups such as Visual
Basic on the other. We are therefore now in the process
of writing renderers for VB, Java, and DDD [6]. These

will be presented in full detail in the upcoming
PCaPAC’02 workshop.

The ideal situation would be to have applications live
as UIML repositories, which can be rendered not only
to the platform of choice, but to the control system of
choice. This requires adherence to a common UIML
control system specification as well as the
corresponding platform specific/control system specific
renderers. As the first task of the wizard is to generate
the UIML repository, we imagine a setup wizard
similar to the server wizard, where the developer
provides information as to what device servers need to
be accessed and what should be displayed, etc. We
could also imagine the ability to scan an existing, say,
VB project and produce the UIML. This UIML could
then either regenerate the VB project or, more
interestingly, a Java project, thereby offering a way to
convert VB code to Java code.

4 CONCLUSION
The TINE server wizard has been in use for the better

part of this year and has been a welcome addition to the
set of development tools. This is primarily because it
generates default code covering the operational setup
and functionality of a server. Developers should of
course learn and be familiar with these aspects of a
TINE server, however the wizard not only offers a
tremendous head start but also immediate successful
feedback.

The TINE client is still a work in progress. We
expect it also to become a welcome tool for the client-
side developers. Primitive applications (those which
basically get data and display it, or perhaps change
device settings) will be able to be generated and run
immediately. More complicated applications (requiring
logic) will be generated in skeletal form, i.e. as a
project which compiles and runs but will have empty
routines which need to be filled in with code by the
developer.

REFERENCES
[1] Philip Duval, “The TINE Control System Protocol:

Status Report”, Proceedings PCaPAC 2000, 2000.
and http://desyntwww.desy.de/tine

[2] http://glade.gnome.org
[3] http://www.uiml.org
[4] I.Deloose, P.Duval, H.Wu, “The Use of ACOP

Tools in Writing Control System Software”,
Proceedings ICALEPCS’97, 1997.

[5] http://www.harmonia.com
[6] K.Rehlich, “An Object Oriented Data Display for

TESLA Test Facility,” Proceedings
ICALEPCS’97, 1997.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

539

