
THAP003
physics/0111166

REMOTE DEVICE ACCESS IN THE NEW CERN ACCELERATOR
CONTROLS MIDDLEWARE

N. Trofimov, IHEP, 142284, Protvino, Russia

V. Baggiolini, S. Jensen, K. Kostro, F. Di Maio, A. Risso, CERN, Geneva, Switzerland

Abstract
This paper presents the Remote Device Access

(RDA) package developed at CERN in the framework
of the joint PS/SL Controls Middleware project. The
package design reflects the Accelerator Device Model
in which devices, named entities in the control system,
can be controlled via properties. RDA implements this
model in a distributed environment with devices
residing in servers that can run anywhere in the controls
network. It provides a location-independent and reliable
access to the devices from control programs. By
invoking the device access methods, clients can read,
write and subscribe to device property values. We
describe the architecture and design of RDA, its API,
and CORBA-based implementations in Java and C++.
First applications of RDA in the CERN accelerator
control systems are described as well.

1 INTRODUCTION
In 1999 an initiative was launched to create a

common software communication infrastructure for the
CERN accelerator controls. This infrastructure should
replace existing heterogeneous software protocols and
components and provide new facilities for the LHC era,
in particular:

• Support the standard Accelerator Device Model
and device I/O services [1].

• Support the publish/subscribe paradigm and
synchronization of application programs with
Accelerator Timing.

• Provide inter-operability solutions for industrial
control systems.

• To use available standards and commercial
products.

Based on these requests, the Controls Middleware
(CMW) project [2] was launched. Following the
technology study and the requirements capture, the
middleware technology was selected and the base
architecture proposed. A number of software
components implementing the proposed architecture
were developed; one of them is the RDA package,
which provides access to the accelerator devices from
application programs in a distributed heterogeneous
environment.

2 DESIGN CHOICES
Besides the already mentioned general requirements,

the design of RDA was significantly influenced by the
need to provide multi-language and multi-platform
inter-operability. RDA should act as a “software bus”
that transparently interconnects applications and
devices implemented in different languages (Java, C++,
C) and running on any of the platforms used in CERN
accelerator controls (Linux, HP-UX, LynxOS,
Windows).

The choice of CORBA as a communication
technology looks obvious in this situation. It was
decided, however, to restrict its use to the RDA internal
software. All CORBA interface and data definitions are
hidden in the package and do not appear in the RDA
application programming interface (API).

It has been discussed for a long time whether a wide
or narrow API would be more appropriate. Wide API
(different calls for different classes) would expose
CORBA to our users and allow them to define device
classes and device-specific data types in CORBA IDL.
The main advantage of this approach is strong compile-
time type checking. Narrow API (same call for all
classes) allows less type checking and imposes some
restrictions on data types, but it can remain stable for a
long time, and this solution was finally chosen in the
RDA design. Our previous experience with RPC-based
systems (Remote Procedure Call) played a role here: a
big number of user-defined interfaces proved to be
difficult to manage and was replaced by a single device
access API.

To avoid compile-time dependency on specific
device data types, RDA uses generic containers where
values are passed between applications and devices,
along with their run-time type descriptions. In this
respect we have been influenced by CDEV [3], and the
CDEV concept of the Data object has been adopted
almost without change. The CORBA any type is used
to transport contents of the Data objects.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

496

3 ARCHITECTURE
RDA is based on a client-server model. Accelerator

devices are implemented in device servers, and client
applications access them using the classes and
interfaces provided in the RDA client API (Figure 1).

Figure 1: Architectural overview of RDA.

The RDAService class manages communications
with remote devices and serves as a factory for
DeviceHandle objects. A client application uses a
DeviceHandle to remotely invoke access methods on a
device. The DeviceHandle delegates device calls over
the transport layer to the DeviceServerBase object that
represents the device server in which the “target”
device resides. DeviceServerBase is an abstract class
that provides the RDA connectivity for concrete device
servers, which are implemented as its derived classes.
A device server developer should at least implement
the four abstract methods declared in the
DeviceServerBase class: these methods are called
whenever a corresponding method is invoked on an
associated device handle.

The get and set methods can be invoked either in
synchronous (blocking) or asynchronous (non-
blocking) mode. All asynchronous calls require a
reference to the object implementing the ReplyHandler
interface as a parameter; when a reply to the request
arrives at the client, the RDA will pass the operation
results to the specified object using methods defined in
this interface.

An object that implements the ReplyHandler
interface must also be specified in each monitorOn call.
This object will receive subscription reports from the
associated ValueChangeListener objects on the server
side. For each incoming subscription request, the
server-side RDA creates a ValueChangeListener object.
The implementation uses this object to forward updates
of property value or errors to the client via notification
methods of the ValueChangeListener class. The
notification methods create subscription reports and
submit them to the transport layer. Reports can be sent
to clients immediately when they are created, or stored
in a buffer and sent when the static flush method is
called. The “store and flush” mode is significantly (10
to 50 times) faster than immediate notification;
however, it imposes some limitations on the format of
reported data.

The transport layer employs the concept of
“connection” between a client and a server. The
connection is represented by the ServerConnection
class on the client side and by the ClientConnection
class on the server side. These two classes provide all
functions needed to send operation requests and receive
replies, as well as functions to control the actual
network connection which they represent.

A connection is created using a factory object,
available in each server, on the initiative of a client
wanting to send a request to that server. Each server
has a unique name; clients obtain references to the
factory objects via the Naming Service. Connections
are normally closed by clients. Abnormal
disconnections (e.g., due to a client or a server crash)
are detected by the RDA connection monitoring
mechanism which is based on “pinging” from a client
to a server. When a client dies, the server no longer
receives the ping, and releases all local resources
related to this client.

If a ping or an ordinary operation fails in a connection
due to an irrecoverable communications error, the
client-side ServerConnection concludes that the server
is inaccessible and invokes the disconnected method on
all reply handlers waiting for subscription reports. It
then starts to monitor the server reference on the
Naming Service. When the server is up again, it
reregisters with the Naming Service; this triggers the
reconnection procedure: the client will attempt to
reconnect to the server and resend all pending
subscription requests. The connection monitoring and
recovery are performed internally by the RDA and are
fully transparent to the client and server applications.

4 CORBA PRODUCT SELECTION
The RDA uses only standard CORBA 2.2 facilities,

so that any standard compliant ORB can be used in the
RDA transport layer. Although CORBA products are

DeviceHandle

get()
set()
monitorOn()
monitorOff()

<<interface>>
ReplyHandler

handleReply()
handleException()
disconnected()

ValueChangeListener

valueUpdated()
ioFailed()
flush()

<<CORBA>>
ServerConnection

<<CORBA>>
ClientConnection

<<singleton>>
RDAService

getDeviceHandle()

DeviceServerBase

get()
set()
monitorOn()
monitorOff()

Device Server Implementation

use

Client Application

use use

device calls

subscription
 reports

0..*

0..*

0..*

0..*

0..*

0..*

0..*

<<implicit>><<implicit>>

0..*

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

497

now available from a large number of vendors,
selection of a product that meets all our requirements
turned out to be not easy. It was especially difficult to
find a suitable, fast and “lightweight” ORB for
LynxOS front-ends, where resources are limited. We
evaluated a number of CORBA products, both
commercial and public domain, and finally selected the
ORBacus family of products from IONA, in particular
ORBacus/E, which is targeted at embedded real-time
applications. ORBacus/E is a commercial product but it
is free for non-commercial use and available in source
code. LynxOS is not an officially supported platform
for ORBacus, but the port to LynxOS 3.0 and 3.1 was
relatively straightforward and did not require any
significant modifications in the source code.

5 CURRENT STATUS
A full implementation of RDA in Java has been

available for about a year now. The C++ server part is
already available on LynxOS, Linux and Windows
platforms, while the client part implementation is in
progress. In this chapter we will briefly describe two
applications of RDA in CERN accelerator controls.
Both applications use the Device Server Framework,
which is another CMW product that extends the server-
side RDA with a set of utility classes facilitating device
server development.

5.1 RDA in AD Controls

A part of the PS complex, the Antiproton
Decelerator (AD), is operated by means of Java
application programs which use CDEV as the
equipment access interface [1]. Until now, gateways
were used to communicate with the equipment; these
gateways are now being replaced by direct connections
to RDA servers deployed on each front-end computer
(Figure 2).

RDA

PS Server

PS Equipment
Module

Device Server
Framework

Workstation

LynxOS Front End

PS Java
Applications

CDEV

Figure 2: RDA in AD controls.

As a result, the equipment access performance has
been significantly improved. A synchronous call from

an application running on an 800 MHz PC to a device
server on a 166 MHz PowerPC via 10 Mb Ethernet
takes about 5 ms. Each device server can send to clients
up to 1000 subscription updates every 1.2s (the
accelerators’ basic period). This limit is imposed
mostly by the data acquisition speed in the server: the
time required for RDA to transmit 1000 updates from a
server to a client is less then 50 ms.

By interfacing CDEV with the RDA client, the
actual AD programs can remain unchanged. This
approach has been successfully tested and it will be
used at the next AD startup.

5.2 OPC Gateway

Connection to industrial systems has been an
important requirement of the CMW project. The
selected solution was to use OPC, which is the de-facto
standard in industrial controls. A server was developed
which is using RDA and the CMW Server Framework.
This server can connect to any OPC Server and maps
each device/property to an OPC Item. This is done
using an ORACLE database description so that each
server can auto-configure. OPC itself supports
subscriptions, which maps easily to RDA
monitor/update. Three different SCADA system
products have been connected this way.

CONCLUSIONS
The RDA package implements data subscription and

automatic reconnection facilities on top of standard
CORBA, while hiding the CORBA complexity from
users. CORBA allowed us to avoid much development,
by using commercial products available from many
vendors.

RDA implements synchronous get/set as well as
publish/subscribe models and performances obtained in
both are satisfactory.

We are currently deploying RDA-based servers on
various platforms and accessing accelerator devices of
different origins (PS, SL and industrial) with Java
programs.

REFERENCES
[1] P. Charrue, J. Cuperus, I. Deloose, F. Di Maio, K.

Kostro, M. Vanden Eynden, “The CERN PS/SL
Controls Java Application Programming
Interface”, ICALEPCS ’99, Trieste, Italy, Oct. 4’8,
1999.

[2] http://proj-cmw.web.cern.ch/proj-cmw: The Web
page of the Controls MiddleWare Project.

[3] J. Chen, G. Heyes, W. Akers, D. Wu, W. Watson,
“CDEV: An Object-Oriented Class Library for
Developing Device Control Applications”,
ICALEPCS ’95, Chicago USA, Oct. 29 – Nov. 3,
1995.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

498

