
FRBT002
cs.SE/0111021

SYSTEM INTEGRATION OF HIGH LEVEL APPLICATIONS DURING
THE COMMISSIONING OF THE SWISS LIGHT SOURCE

A. Lüdeke, PSI, Switzerland

Abstract

The commissioning of the Swiss Light Source (SLS) started
in Feb. 2000 with the Linac, continued in May 2000 with
the booster synchrotron and by Dec. 2000 first light in the
storage ring were produced. The first four beam lines had to
be operational by August 2001. The thorough integration of
all subsystems to the control system and a high level of au-
tomation was prerequisite to meet the tight time schedule. A
careful balanced distribution of functionality into high level
and low level applications allowed an optimization of short
development cycles and high reliability of the applications.

High level applications were implemented as CORBA
based client/server applications (tcl/tk and Java based
clients, C++ based servers), IDL applications using EZCA,
medm/dm2k screens and tcl/tk applications using CDEV.
Low level applications were mainly built as EPICS pro-
cess databases, SNL state machines and customized drivers.
Functionality of the high level application was encapsulated
and pushed to lower levels whenever it has proven to be
adequate. That enabled to reduce machine setups to a hand-
ful of physical parameters and allow the usage of standard
EPICS tools for display, archiving and processing of com-
plex physical values. High reliability and reproducibility
were achieved with that approach.

1 INTRODUCTION

The construction and commissioning of the Swiss Light
Source was done in a very tight time schedule. The top
priority was to deliver all required applications in time and
do enhancements when needed on the fly during the com-
missioning. External companies delivered subsystems in-
cluding the controls, like for the Linac1 and the 500 MHz
RF-system2. The requirements for the graphical user inter-
faces for these systems were done by the system responsible
and therefore no effort on a standardization of the interfaces
was spend. As a result the high level applications are built
in a variety of different languages and even using several
different intermediate access methods to the same data.

A careful integration of the high level software was re-
quired to limit the negative long term effects on the main-
tainability and on user interface standardization. Since the
man power did not allow to rewrite all high level applica-

1Delivered byAccel http://www.accel.de, Controls done by Puls-Plasma
Technik (PPT)

2Delivered by Thomcast AG, Switzerland

tions with a standardized interface, the chosen strategy was
to smoothly migrate the functionality into lower level until
the actual user interface could be replaced by GUIs built
with a generic EPICS GUI builder.

2 APPLICATION ENVIRONMENT

An excerpt of the application environment scheme of the
SLS control system is shown in figure 1. The graphical

Figure 1: Application model

user interfaces (GUI) are written in a variety of different
programming languages. The choice was mostly left to
the developer, only under the constrains of connectivity to
EPICS and the portability of the programming language.
Java, Tcl/Tk (including itcl and the BLT library) and the
commercial interpreter language Interactive Data Language
(IDL) were used for applications.

The beamdynamics group developed a Common Ob-
ject Request Broker Architecture (CORBA) environment
to support their needs for multiple connectivity. The so
called model-server provides access for the GUIs as well
as for other client/server applications to the EPICS control-
system, the Oracle database, to the tracy accelerator simu-
lation tools[1] and an event server. Details about this envi-
ronment are presented in [2].

The Controls environment uses the Common DEVice
(CDEV)[3] middle-ware as primary connection method of

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

653



the applications. Nevertheless several standard EPICS ap-
plications using still the standard channel access methods
to connect to the EPICS databases. CDEV also allows ad-
ditional access methods, like an access to special tables in
the Oracle database[4].

3 FUNCTIONALITY MIGRATION

For the development of new applications it has certain ad-
vantages to incorporate all data processing into the GUIs.

A variety of development environments are available for
the console hosts like Visual Age for Java and scripting lan-
guages like tcl/tk or IDL with easy means to test data pro-
cessing algorithms and to incorporate several views on the
same data for debugging purposes. The application should
allow to view the raw data, to compare results of different
algorithms and to optimize the data filtering. Especially
when the data is retrieved by newly developed hardware,
these features can be very useful.

On the other hand the maintenance of these customized
GUIs is difficult and time consuming in the long term.
Therefore it is desired to separate the functionality from
the user interface. At the SLS we follow the strategy to
migrate functionality that is needed for operation into low-
level applications as soon as it works reliable. Either it will
be implemented as a server application in the CORBA en-
vironment or it is migrated to the VME level: as an EPICS
database, a device/driver support or a SNL program.

4 EXAMPLES

In the following some examples are presented to outline the
advantages of the delayed functionality migration from the
user interface to the service level. Migration of functional-
ity is most often a collaborative task, where the implemen-
tation in the different levels are done by various persons.
The described examples were realized by the SLS controls,
beamdynamics and diagnostic groups.

4.1 Lifetime Calculation

A simple example of a data processing application is the life-
time calculation. The first step was to calculate the lifetime
from a precise current measurement with an update period of
two seconds, done by aVoltmeter readout via GPIB3.A Java
application (GUI shown in fig. 2) collected the data and cal-
culated the lifetime by four different algorithms. An EPICS
soft channel was used to export the calculated lifetime for
other applications. Therefore standard EPICS applications
could be used to archive the lifetime for later analysis or to
have real-time strip charts together with other channels.

The drawback was, that the data was only generated while
the GUI was running. Therefore the algorithm was ported
to C as an EPICS device support, after its reliable opera-
tion was proved. All parameters of the lifetime calculation

3GPIB: IEEE-488 parallel bus

Figure 2: Lifetime application

are now channels and can be controlled and read by stan-
dard applications. This has the additional advantage, that
no maintenance effort for the customized lifetime GUI is
needed.

Tests of an alternative faster readout of the current mea-
surement are now in progress. The increased sample rate
will allow to measure the lifetime between the continuous
injections in “top-up” mode.

4.2 Magnet Optics Control

A particularity of the SLS storage ring is the individual pow-
ering of all 174 quadrupole magnets. This allows very flex-
ible adjustments of the focusing but also contains the risk
of a huge parameter space. Right from the start of the ring
commissioning a special IDL GUI (see fig. 3) was used
to set all elements of the magnet optics according to the-

Figure 3: Magnet optics application “Tset”

oretical calculations with just a few physical parameters
for the adjustment to the real machine. The optics was
selectable by a menu button and the adjustment parame-
ters were: horizontal- and vertical tune shift, horizontal-
and vertical chromaticity shift, a sextupole- and a global
energy scaling. The nominal optics values were coded in
the GUI and all matrix parameters to calculate the magnet
set-currents from the nominal settings and the adjustment
parameters. This approach allowed to store and accumulate
beam within the first days of commissioning.

A clear drawback was that the actual machine state was
only known to the application. If the GUI was closed, there
was no easy way to deduce the actual used optics and adjust-
ment parameters from the magnet current settings. This was
solved by migrating the functionality to an EPICS database.
The nominal magnet currents of the optics and the adjust-
ment matrices are now generated by the optics simulation
application in a standard EPICS snapshot format. This can

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

654



be downloaded to the machine using standard save and re-
store tools. Therefore newly developed optics can be easily
applied to the machine.

The actual settings of the machine for a chosen optics
are now reduced to very few physical parameters. They are
now EPICS channels and all EPICS standard tools can be
used to control, save, restore, archive and view them (see
fig. 4.) An important advantage, compared to storing the

Figure 4: Generic panel.tcl applications to control the mag-
net optics of the SLS storage ring

set-currents of the magnets, is that these actual set-ups do
explain the machine adjustments in physical terms, directly
understandable to the accelerator physicist.

4.3 Orbit Feedback

The SLS storage ring orbit feedback is designed to allow a
global feedback with a regulation loop period of 1µs. The
correction matrix is calculated by a central server using the
Singular Value Decomposition (SVD) method. Local DSPs
will calculate the actual corrections from the BPM data and
write the set-current to the corrector magnet power supplies
(see also [5].)

The implementation of this rather complex application
was approached in several steps. One of the first steps was
to implement an orbit correction by the GUI “oco”. This ap-
plication connects to the model server to read the BPM data,
calculate corrections using the tracy server and writes the
corrections to the corrector PS again via the model server.
Useful enhancements like the introduction of the acceler-
ating frequency as an 73th corrector and the possibility to
disable low weighted eigenvalues for the reduction of the
total correction strength were found at that stage. After
successful tests of the orbit correction method the sequen-
tial control was migrated to a “slow orbit feedback server”.
This server is configured, started and stopped by the GUI
oco but otherwise runs independently with a loop period of
up to a second. First tests were done in a passive mode,
where the calculated correction were not applied. Again
EPICS soft channels are used to have a standardized inter-
face to watch the activity of the server. Figure 5 shows the
archived activity of the slow orbit feedback during a top-up
run at 150 mA. The saw tooth behavior of the applied hor-

Figure 5: Archived activity of the slow orbit feedback. Stan-
dard EPICS tools like the Channel-Archiver and Channel
Archive CGI Interface were used to debug the feedback al-
gorithm.

izontal RMS kick (OFB-XRMS) and the horizontal mean
kick (OFB-XMEAN) is due to the orbit length correction
by minimum frequency steps (OFB-DF) of 10 Hz.

In the next step, the functionality of the feedback server
will be partially migrated to the local orbit feedback DSPs.

5 SUMMARY

The successful commissioning of the light source in time
was the main goal for the application development at the
SLS. All desired functionality was delivered timely and
worked satisfactory. The main focus now for the high level
applications is to improve the maintainability of the system
by separating the required functionality for the operation
from the GUIs and provide standardized user interfaces.

The intermediate usage of EPICS soft channels for the
data export from the applications proved to enable a trans-
parent migration of the functionality to the low level appli-
cations later on.

6 REFERENCES

[1] M. Böge “Update on TRACY-2 documentation”, June 1999,
PSI, Switzerland, SLS-TME-TA-1999-0002

[2] M. Böge, J. Chrin, “On the Use of CORBA in High Level Soft-
ware Applications at the SLS”, ICALEPCS 2001, San Jose,
USA

[3] J. Chen et al., “An Object-Oriented Class Library for Develop-
ing Device Control Applications”, ICALEPCS 1995, Chicago,
USA

[4] T. Pal, “Storing and transparently accessing CDEV Device
properties in a relational database”, EPICS workshop 1999,
Triest, Italy

[5] M. Böge, M. Dehler, T. Schilcher, V. Schlott, R. Ursic, “Fast
Closed Orbit Control in the SLS Storage Ring”, PSI, Switzer-
land, PAC 1999, New York, USA

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

655


