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The scheme of the single-pass high gain FEL amplifier
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General scheme and principles of

operation of ring FEL

-

radiation

electron

~

The beam microbunching is partly conserved
in the isochronous bend




Experimental observation of the coherency of radiation from two undulators
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undulators

isochronous bends

undulator undulator
fresh bunch

energy modulation emission of radiation

Signal from the old bunch to the fresh one is transferred by radiation
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undulators

Ring FEL requires ERL as a source of electron
beams, as the average beam power can be very high.




Circuit representation and linewidth of ring FEL
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Possible layout of the infrared ring FEL
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Lattice of iIsochronous bends

[Typical lattice of short isochronous bend]

Second order aberrations are compensated by sextupoles




Second order aberrations

Energy spread and emittance can cause debunching

: S 2 2
: PR . E
These terms are negligible o’ g7( iVX(S')EdS'] +7y(

compared to the others

Choosing the proper values of sextupoles o
one can adjust (x|x,?) to make T, zero o B T
: 2 - =

................

\ 4

To(S)=—
(s) 5




Linear lattice functions j,, f,, and D, of the isochronous
bend of the infrared (6 microns) ring FEL
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Simulation of the ring FEL operation

Basic parameters used in simulations

ﬁectron energy, MeV 50 \

Peak current, A 50/100
Beam charge, nC 1
Relative r.m.s. energy spread, % 0.1
Normalized r.m.s. emittance, mmxmrad 5
Undulator period, cm 6
Undulator deflection parameter K 1.5
Bend angle, degrees 180
@:nd length, m 3 J




Simulation scheme

GENESIS simulation with
zero initial radiation field

and particle distribution
l imported from previous
run

-------------------------------------------------

- / undlators

isochronous bends
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Nonlinear phase space
mapping by external code.
CSR wake and gquantum
fluctuations are applied

here.

GENESIS simulation with
fresh particle distribution
and initial radiation field
imported from previous
run




50 A peak current case

Dependence of the electron efficiency on the pass number in ring FEL
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Dotted curve corresponds to ideal case without CSR effects



Dependence of the beam bunching factor and peak radiation power
on the longitudinal coordinate in the last undulator section
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Dotted curves — CSR effects are not included



Stationary beam bunching radiation power and spectral distributions
at the exit from the last undulator section

10 I!I!I!I!I!I 210
< 3 U I S A S 416
>
g SR
S . 5 -
c (O]
& = 5 4L
a (a
2 |-
O 1
6,4

Dotted curves — CSR effects are not included,
dashed curve — beam current profile



Parameters of the output radiation

Wavelength, um ~ 6.6
Peak power, MW ~ 10
Pulse duration, ps ~ 10
Electron efficiency, % 0.15




100 A peak current case

Dependence of the electron efficiency on the pass number in ring FEL

o
w

o
N
|
v
|

o

Electron efficiency, %

o
o

Pass number

Dotted curve corresponds to ideal case without CSR effects



Stationary beam bunching radiation power and spectral distributions
at the exit from the last undulator section
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Dotted curves — CSR effects are not included,
dashed curve — beam current profile



Beam current distribution and electron energy deviation
induced by CSR
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Dotted curves illustrate the beam bunching (green) and
radiation power (red) distributions
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Conclusion

v" We have shown theoretically the feasibility of the
compact high power ring FEL for the infrared region.

v' At that we have considered the problem of beam
debunching in the bends and CSR effects.

v" The next step should be the building of such FEL and
demonstrating the feasibility of the ring FEL concept in
practice.
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The end.



