Design of a Long Wavelength FEL for Experiments under High Magnetic Fields

Wim J. van der Zande, Theo Rasing, Jan Kees Maan, Arno Kentgens and Frans Harren
Contents

Large Scale Research Facilities in the Netherlands
• Investments in the future of the ‘knowledge-economy’

Science Drivers for a New Light Source
• The limitations of material and molecular research in high Magnetic Fields
• Dynamic Nuclear Polarization in NMR
• Biomolecular Spectroscopy

Design and system choices for our Nijmegen FIR-FEL
• Combining pump-probe options with very narrow bandwidth output in a single instrument
Nijmegen Center for Advanced Spectroscopy
On Large Scale Research Facilities in the Netherlands

The Nijmegen Center for Advanced Spectroscopy

- *NanoLab* (Rasing)
- *Trace gas Facility* (Harren)

Design of a Long Wavelength FEL to facilitate access to Nano-Science and Technology for Small and Medium size enterprises

part per billion range (1 ppb = 1:10⁹), 100 times more sensitive than best commercially available equipment
Nijmegen Science Faculty

HFML (Maan)

NMR pavillion (Kentgens)

Science faculty: opening 2007
Magnetic Field Landscape

Destructive pulsed
Capacitor driven pulsed
(55T → 80T)
Regulated quasi CW (→35T)
Hybrid magnets (41T → (45T !!)
Resistive magnets (33T)
Superconducting magnets

18T

Nijmegen HFML Facility
Nijmegen High Field NMR (33T, 1.27 GHz)

NMR and HFML: NMR towards Instrumentation above 1 GHz

- 33 T
- 40 kA
- 20 MW
NMR by mechanical detection

\[F_z = M_z \frac{\partial B}{\partial z} \]

\(B_0 = 4.7 \text{T} \)

Gradient

Vacuum

Fiber optic interferometer

Cantilever

B\textsubscript{1} coil
Magnetic Resonance Force Microscopy
Elementary Excitations in Magnetic Fields

- Pseudogaps of high-Tc superconductors
- Superconducting gaps
- Antiferromagnetic resonance
- Ferromagnetic spin waves
- Lattice vibrations and polarons
- Electron spin and oscillation resonances

Science Drivers (I)

- Magnetic field (T)
- Frequency (THz)
Probing Dynamic Interactions and Inhomogeneous Effects

(A) 90° pulse: implies full saturation of the transition: a challenge in the THz: inducing a $\pi/2$ pulse
pulselength 100 ns: 100 Watt
pulselength 50 ns: 400 Watt

(B) Need for two pulses with variable time-separation:
time-separation up to a few μs

(A+B) We need a continuous narrow bandwidth FIR pulse
Dynamic Nuclear Polarization:

Coupling of EPR-NMR: dragging as many nuclear spins as possible into a pure quantum state

NMR science needs to meet two contradicting demands:
(a) (weak) coupling to help pull nuclear spin: INTENSE FIR!
(b) no-coupling during the (enhanced) NMR phase MORE INTENSE!
Dynamic Nuclear Polarization: Coupling during collisions: e.g. in Xe Hyperpolarization.

Off-Line Preparation Times of Hyperpolarized Samples are Minutes.

CW FIR NEEDED!?
Molecular Spectroscopy in the THz:
More than molecular recognition

From Electronic (UV) \rightarrow IR (NH, NO, CH _ = structure) \rightarrow (to) FIR
(large scale motion or functionality)
Consequences of Nijmegen Users:

REQUESTED BUT IMPOSSIBLE:
- continuous wave to 20 picoseconds time-resolved pump-probe
- continuously tunable light source with a variable bandwidth ranging from 1.10^{-5} to Fourier limited at all pulse structures
- tunable power output up to 10 kWatt
- 100% duty cycle
- wavelength between 10 μm (30 THz) and 10 mm (0.03 THz)

FOR HIGH MAGNETIC FIELDS ONLY:
- quasi-continuous wave, tunable light source
- bandwidth down to 1.10^{-5}
- macro-pulses of length up to 10 μs
- (macro pulse) power of 1 kWatt
- high overall duty cycle

Compare: the USCB-FIR-FEL, Santa Barbara, and the Israeli FEL project, Tel Aviv).
Design Choices:

philosophy:
allowing (quasi) continuous wave operation with a narrow bandwidth as well as 20 picoseconds time-resolved pump-probe experiments, continuously tunable

design aim:
an RF Linac (1 to 1.3 GHz)
a linear cavity with an interferometer (Michelson / Fox-Smith) and 20-30 simultaneous optical pulses

Output:
quasi CW-output after post-cavity filtering, 100 Watt
or
micro-pulses (20-50 psec pulses, 10 kWatt during the 10 μs macro-pulse).

Wavelength: from 100 μm (3 THz) to 1.5 mm (200 GHz).
The THz FEL - Operation
The Narrow Band THz FEL - Operational Principle

Oepts and Colson (1990), Bakker, Oepts, Van der Meer et al. (1993), Oepts, Weits, Van der Meer et al. (1996-1998), Szarmes, and Madey (1993), Israeli Project (2005) and others ...
Generation of Phase-Locked Pulses (FELIX, 1990-1999)

Experiment at 69 nm

Bandwidth of single micro-pulse (2.5 cm⁻¹)

After phase locking of the micro-pulses (☺ and ☹ (spontaneous coherence)

Bandwidth (=quality of phase coupling) of Fox-Smith about 0.0015 cm⁻¹

Ideal: external filtering of single longitudinal cavity mode (0.0002cm⁻¹ or BWL macro-pulse)
Generation of Phase-Locked Pulses (FELIX, 1990-1999)

Fox-Smith: inserting path differences (= multiples of the micro-pulse distance)

Michelson: Measuring the inter-pulse coherence
Results from Weits et al.:

Interferogram:
Up to 1.8 meter path difference in analysing Michelson!
External Selection with Fabry-Perot Etalons:
Study Themes:

- optimal design for intracavity phase locking between 100 μm and 1.5 mm
- controlling the spontaneous coherence and interferometer induced coherence
- material research on low-loss optics and frequency filters
- maximizing duty cycle

Planning:
- January 2008: detailed plan for hybrid, FEL and Building
- 2008-2010: construction and commissioning
Acknowledgements:

First:
National (NL) Programme for Investments in Large Scale Facilities

And further:
Lex van der Meer, Dick Oepts, + FELIX Staff.
and
Van Bentum (NMR), Peerenboom, Guertler (HFML), Meerts (Mol Spectroscopy)

and the FEL community for their ‘hospitality’ at this conference