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Abstract

Longitudinal space charge (LSC) force can be a main ef-
fect driving the microbunching instability in the linac for
an x-ray free-electron laser (FEL). In this paper, the LSC-
induced beam modulation is studied using an integral equa-
tion approach that takes into account the transverse (radial)
variation of LSC field for both the coasting beam limit and
bunched beam. Changes of beam energy and the transverse
beam size can be also incorporated. We discuss the validity
of this approach and compare it with other analyses as well
as numerical simulations.

INTRODUCTION

To ensure an x-ray FEL successful commission and op-
eration, the electron beam is prepared with highest possi-
ble quality. However, such high quality electron beam is
subject to various instability along the accelerator system.
Due to the very small energy spread from the RF gun, the
Landau damping is ineffective [1, 2, 3]. Because of the in-
evitable density un-smoothness of the electron beam born
from the RF cathode, the space charge effect can induce
large energy modulation on the beam, which leads to insta-
bility downstream [2, 4]. In this paper, we study the LSC
effect taking into account acceleration, and also variation
of transverse beam size during the acceleration. We study
this analytically via an integral equation approach, which
is compared to direct numerical simulation, and also other
analytical approach [5].

COASTING BEAM THEORY

1-D formulae

Following Ref. [1], but taken into account of accel-
eration, the beam is described by a distribution function
f(x, x′, y, y′, z, γ; s) with s = c

∫ √
1− γ−2dt to be the

position along the beam line. The distribution function im-
mediately after the energy kick due to wakefield (at τ + 0)
is related to that immediately before (at τ − 0) by

f(Xτ ; τ + 0) = f(Xτ −ΔX; τ − 0) (1)

≈ f(Xτ ; τ − 0)−Δγ
∂f(Xτ ; τ − 0)

∂γτ
;

where ΔX = (0, 0, 0, 0, 0,Δγ). Here, we focus on the
longitudinal phase space only. Summing up wakefield con-
tribution over the entire trajectory, i.e., τ ∈ [0, s], and using
the boundary notation f [Xτ→s; (τ → s)+0] = f [X(s); s],
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and f [Xτ→0; (τ → 0)− 0] = f0(X0), the evolution of the
distribution function under the influence of the wakefield is

f [X(s); s] = f0(X0)−
∫ s

0

dτ
∂f(Xτ ; τ − 0)

∂γτ

dγ

dτ
. (2)

The rate of energy change due to the wakefield is

dγ

dτ
= −re

∫
dk1

2π
Z(k1; τ)Nb(k1; τ)eik1zτ . (3)

Here re is the electron classical radius, N is the total num-
ber of electron, γ is the Lorentz factor, and Z(k1; s) is the
longitudinal impedance.

Introducing density bunching factor b(k; s) as

b(k; s) =
1
N

∫
dXe−ikzf(X; s), (4)

and using Eq. (2), we have

b[k(s); s] = b0[k(s); s]− ik

N

∫
dτR56(τ → s)

×
∫

dXτe−ikz(Xτ )f (Xτ ; τ − 0)
dγ

dτ
, (5)

where

b0(k; s) =
1
N

∫
dX0e

−ikzf0 (X0) , (6)

is the bunching factor without wakefield. We have intro-
duced the symplectic transfer matrix as X(s) ≡ R(τ →
s)X(τ). Now, plug Eq. (3) into Eq. (5), we have

b[k(s); s] = b0[k(s); s] + ikre

∫
dτR56(τ→s) (7)

×
∫

dk1

2π
Z(k1; τ)b(k1; τ)

∫
dX0e

−ikz+ik1zτ f0 (X0) ,

where zτ = z0 +R56(0→ τ)Δγ0, and z = z0 +R56(0→
s)Δγ0.

Now, let us assume that

f0 (X0) = f̄0 (X0) + f̂0 (X0) , (8)

where f̄0 (X0) is the average distribution function, and
f̂0 (X0) is the initial microbunching. For microbunching
wavelength much smaller than the bunch length, we could
assume uniform longitudinal distribution, hence coasting
beam, in z, and Gaussian in Δγ for the average distribu-
tion function, i.e., we assume

f̄0 (X0) =
n0√

2πσΔγ

exp

{
− Δγ2

2σ2
Δγ

}
, (9)
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where n0 is the average line density. Within the linear the-
ory, we could neglect the f̂0 (X0) in completing the integral
in Eq. (7). In doing so, we get

b[k(s); s] = b0[k(s); s] +
∫ s

0

dτK(τ, s)b[k(τ); τ ], (10)

with the kernel of the integral equation as

K(τ, s) = ik(s)R56(τ → s)
I(τ)Z[k(τ); τ ]

IA

× exp
{−k2

0R2
56(τ → s)σ2

Δγ/2
}

, (11)

where

R56(τ → s) ≡
∫ s

τ

dx

γ(x)3[1− γ(x)−2]
. (12)

It is worth noticing that due to the uniform distribution in
z, there is only a single frequency selected in k-integral in
Eq. (7). Should we work on a Gaussian distribution in z,
we will deal with a multi-frequency theory.

According to Eq. (3), the resulting accumulated energy
modulation spectrum is then

Δγ[k(s); s] = −
∫ s

0

dτ
I0Z[k(τ); τ ]b[k(τ); τ ]

IA

× exp
{−k2R2

56(τ → s)σ2
Δγ/2

}
, (13)

where I0 = ecn0 is the peak current with n0 = N/L the
peak density, and IA ≈ 17045 Amp is the Alfvén current.

Radial Dependance

If the transverse dynamics and the longitudinal dynamics
are separable, i.e., we assume that the distribution function
is factorable

f(X; s) = fr(r; s)fz(z; s), (14)

with the normalization of∫
drfr(r; s) = 1, (15)

then the three dimensional problem can be simplified into
one dimensional problem.

Transverse averaging approach One approach is to
average out the transverse variables. The energy change
rate is then

dγ(r, z; s)
ds

= −re

∫
dz′dr′w (z − z′, r, r′) f (z′, r′; s)

= −re

∫
dr′

∫
dk

2π
Z (k; r, r′) eikz

×
∫

dz′e−ikz′fr (r′; s) fz (z′; s)

= −re

∫
dk

2π
Z̄[k(s); r, s]Nb[k(s); s]eikz , (16)

where we have introduced the wakefield as

w(z, r, r′, s) =
∫

dk

2π
Z(k; r, r′, s)eikz; (17)

and we have also defined the averaged impedance as

Z̄(k; r, s) =
∫

dr′Z(k; r, r′, s)fr(r′; s). (18)

The bunching factor could be simplified as

b(k; s)=
1
N

∫
dXe−ikzf(X; s)=

1
N

∫
dze−ikzfz(z; s), (19)

according to Eqs. (14) and (15).
Now, plug Eq. (16) into Eq. (5), we have

b[k(s); s] =b0[k(s); s] + ikre

∫
dτR56(τ→s)

∫
dX0 (20)

×
∫

dk1

2π
Z̄(k1; r, τ)b(k1; τ)e−ikz+ik1zτ f0 (X0) .

We then do the linearization and complete the integrals as
we did for the 1-D case. In doing so, we formally get the
same equation for the evolution of the bunching factor as
in Eq. (10). However, the kernel of the integral equation is
different from that given in Eq. (11). Here, the kernel is

K(τ, s) = ik(s)R56(τ → s)
I(τ) ¯̄Z[k(τ); τ ]

IA

× exp
{−k2

0R2
56(τ → s)σ2

Δγ/2
}

, (21)

where the double-averaged impedance is defined as

¯̄Z(k; s) =
∫

drZ̄(k; r, s)fr(r; s). (22)

According to Eq. (16), the resulting accumulated energy
modulation spectrum is then

Δγ[k(s); s] = −
∫ s

0

dτ
I0

¯̄Z[k(τ); τ ]b[k(τ); τ ]
IA

× exp
{−k2R2

56(τ → s)σ2
Δγ/2

}
. (23)

Radial variable as parameter Should we not do the
average in Eq. (18), we can keep the r-dependence. This
approach was recently taken in Ref. [5, 6]. In our approach,
we introduce a radial-dependent bunching factor

b(k; s, r) =
1
N

∫
dze−ikzf(r, z; s)

= fr(r; s)
1
N

∫
dze−ikzfz(z; s), (24)

so that

b(k; s) =

∫∫
Σ⊥

drb(k; s, r)

Σ⊥
. (25)
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The energy change rate is then

dγ(r, z; s)
ds

=−re

∫
dz′dr′w (z − z′, r, r′) f (z′, r′; s)

=−re

∫
dr′

∫
dk

2π
Z (k; r, r′) eikz

×
∫

dz′e−ikz′fr (r′; s) fz (z′; s) (26)

=−re

∫
dr′

∫
dk

2π
Z[k(s); r, r′]Nb[k(s); s, r′]eikz,

Therefore the bunching factor evolves as

b[k(s); s, r] = b0[k(s); s, r] (27)

+
∫ s

0

dτ

∫
dr′K(τ, s, r, r′)b[k(τ); τ, r′]

with

K(τ, s, r, r′) = ik(s)R56(τ → s)
I(τ)Z[k(τ); τ, r, r′]

IAΣ⊥
.

(28)
The corresponding evolution for the energy modulation is

Δγ(s, r)=−
∫ s

0

dτ

∫
dr′

I0Z[k(τ); τ, r, r′]b[k(τ); τ, r′]
IAΣ⊥

.

(29)
Hence, the average energy modulation is

Δγ(s) =

∫∫
Σ⊥

drΔγ(s, r)

Σ⊥
. (30)

BUNCHED BEAM THEORY

In reality, the electron beam’s longitudinal distribution
is not uniform, hence let us now improve the theory to deal
with bunched beam, and so multi frequency case.

1-D formulae

For 1-D theory, the derivation up to Eq. (7) stays the
same. For a Gaussian longitudinal distribution, we assume

f̄0(X0) =
N

2πσΔγσz
exp

{
− Δγ2

2σ2
Δγ

− z2

2σ2
z

}
. (31)

Here we use the same notation for f̄0(X0) as in Eq. (9)
without worrying about any possible confusion.

Completing the integral in Eq. (7), we obtain the evolu-
tion for the bunching factor as

b [k(s); s] = b0 [k(s); s] (32)

+
∫ s

0

dτ

∫
dk(τ)
2π

K [k(τ), k(s); τ, s] b [k(τ); τ ] ,

with the integral kernel to be

K[k(τ), k(s); τ, s]=ik(s)R56(τ → s)
I(τ)Z [k(τ); τ ]

IA

×exp
{
− [k(s)− k(τ)]2σ2

z

2
(33)

− [k(s)R56(s)− k(τ)R56(τ)]2σ2
Δγ

2

}
.

The corresponding accumulated energy modulation spec-
trum is then

Δγ[k(s); s]=−
∫ s

0

dτ

∫
dk(τ)
2π

I0Z[k(τ); τ ]b[k(τ); τ ]
IA

×exp
{
− [k(s)− k(τ)]2σ2

z

2
(34)

− [k(s)R56(s)− k(τ)R56(τ)]2σ2
Δγ

2

}
.

Radial dependance

Let us take the radial dependance into consideration.
With the transverse averaging approach, we simply replace
Z [k(τ); τ ] in Eqs. (32), (33), and (34) by ¯̄Z [k(τ); τ ] de-
fined in Eq. (22).

Figure 1: Example of Figs. 10 and 11 of Ref. [5]. The
initial density modulation is â1d = e−r̂2/(2σ) with σ =
0.1, and q = 1. The solid curve (blue) is at ẑ = 0, and
the dashed curve (red) is at ẑ = 10. Notations have same
meaning as in Ref. [5], the Êz is normalized.

LSC IMPEDANCE WITH RADIAL
DEPENDENCE

Having setup the frame work above, let us now find the
LSC impedance with radial dependence.

Green function for a δ−ring

What we need is the Green function for a δ−ring. We
omit the derivation here, for a δ−ring at r′, the LSC
impedance is

Z(r, r′, z)=
k

γ

[
Θ(r′ − r)

2
γ

K0

(
kr′

γ

)
I0

(
kr

γ

)

+Θ(r − r′)
1

kr′
K0

(
kr

γ

){
2I1

(
kr′

γ

)

+
kr′

γ

[
I0

(
kr′

γ

)
+I2

(
kr′

γ

)]}]
. (35)
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Figure 2: Example of Figs. 14 and 15 of Ref. [5]. The
initial density modulation is â1d = 1 with σ = 0.1, and
q = 1. The solid curve (blue) is at ẑ = 0, and the dashed
curve (red) is at ẑ = 10. Notations have same meaning as
in Ref. [5], the Êz is normalized.

For parabolic distribution, one can get a closed form for the
average impedance defined in Eq. (18).

COMPARISON

Let us now compare the results to some other analytical
approach [5], and also numerical simulation.

Comparison with other analytical approach

Compared to theory in Refs. [5, 6], our approach has the
advantage of treating the real beam line, where beam en-
ergy and transverse beam size are varying, and the beam is
bunched. Nevertheless, let us make some comparison with
Ref. [5]. In their paper, they introduce a dimensionless pa-
rameter q = kmr0/γz , with km = 2π/λm where λm is the
modulation wavelength; r0 is typical transverse beam size;
and γz is the longitudinal Lorentz factor. Their theory re-
duces to 1-D formula when q →∞. Hence, let us compare
for the case of having a small q = 1. In Figs. 1 and 2, we
study the same examples in Figs. 10, 11, 14, and 15 of Ref.
[5]. The results are almost the same.

Comparison with PARMELA

Having compared with the results in Ref. [5] for their
limited applicability, let us now deal with realistic beam
line. The example we study is for beam with energy E =
5.7 MeV and peak current of 100 A. We study a 3 m long
drift space, with betatron focusing, hence the rms trans-
verse beam size σr is varying from 0.5 mm to 3.7 mm. The
initial density modulation is 5 % with wavelength of 0.5
mm. This yields that q ∈ [1.0, 7.2] taking r0 =

√
3σr. We

show in Fig. 3 the results of the four approaches developed
in this paper. As a comparison, PARMELA simulation [7]
for a bunched beam, with rms bunch length σz = 0.83 mm,
is also presented.

Figure 3: Comparison of four different analytical ap-
proaches developed in this paper with PARMELA simu-
lation. The long-dashed curve (red) is the 1-D coasting
beam approach, the dashed curve (green) is the coasting
beam with radial dependence approach, the dash-dotted
curve (purple) is the 1-D bunched beam approach, the solid
curve (blue) is the bunched beam approach with radial de-
pendence, and the “	” (black) is the PARMELA simula-
tion.

DISCUSSION

As shown in Fig. 3, it is clear that the coasting beam
theory is over simplified in dealing with LSC in real situa-
tion where the beam is bunched. Even with radial depen-
dence, the coasting beam theory [5] can not capture some
of the features in simulations for bunched beam, which is
the realistic situation. It is worthwhile to point out that in
Ref. [5, 6], the r−dependance comes in also as a param-
eter, i.e., f(X; s) = fr(r)fz(z; s), but not fr(r; s) as in
Eq. (14) of our paper. For Ref. [3], since we were dealing
with beam having energy higher than 135 MeV, the den-
sity microbunching is mostly frozen; hence no dynamics as
discussed here. As we find, based on a bunched beam the-
ory, and further taking into account the radial dependence,
the analytical approach developed here show a good agree-
ment with the PARMELA results. The authors would like
to thank C. Limborg of SLAC and M. Borland of ANL for
many stimulating discussions.
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