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The interaction between high-brilliance electron beams 
and counter-propagating laser pulses produces X rays via 
Thomson back-scattering. If the laser source is long and 
intense enough, the electrons of the beam can bunch and a 
regime of collective effects can be established. In the case 
of dominating collective effects, the FEL instability can 
develop and the system behaves like a free-electron laser 
based on an optical undulator. Coherent X-rays can be 
irradiated, with a bandwidth very much thinner than that 
of the corresponding incoherent emission. The emittance 
of the electron beam and the distribution of the laser 
energy are the main quantities that limit the growth of the 
X-ray signal. In this work we analyse with a 3-D code the 
transverse effects in the emission produced by a 
relativistic electron beam when it is under the action of an 
optical laser pulse and the X-ray spectra obtained. The 
scalings typical of the optical wiggler, characterized by 
very short gain lengths and the overall time durations of 
the process make possible considerable emission also in 
violation of the Pellegrini criterion for static wigglers. A 
generalized form of this criterion is validated on the basis 
of the numerical evidence. 

INTRODUCTION 
A Thomson back-scattering set-up can be considered in 

principle as a source of intense X-ray pulses which is at 
the same time easily tunable and highly monochromatic. 
Due to recent technological developments in the 
production of high brilliance electron beams and high 
power CPA laser pulses, it is now even conceivable to 
make steps toward their practical realisation. 

The radiation generated in the Thomson back-scattering 
is usually considered incoherent and calculated by 
summing at the collector the intensities of the fields 
produced in single processes by each electron. If the laser 
pulse is long enough, however, collective effects can 
establish and become dominant. The system in this range 
of parameters behaves therefore like a free-electron laser, 
where the static wiggler is substituted by the optical laser 
pulse.  

From the point of view of the theoretical description of 
the process, it is convenient to start with the same set of 
one-dimensional equations that are used in the theory of 
high-gain free-electron laser amplifier [2]. To take into 
account the many aspects of the process connected with 
the finite transverse geometry of the electron beam and of 

the laser and radiation pulses it is necessary to consider 
3D equations. 
The procedure we have followed to write a system of 3D 
equations will be described in the next section of this 
preliminary report. A first set of numerical results and a 
short discussion of their importance will be given at the 
end of the paper. 

3D EQUATIONS 
We start from the Maxwell-Lorentz equations that 

describe both laser and collective electromagnetic fields 
and from the relativistic equations of motion for the 
electrons of the beam. The laser and collective fields are 
given in terms of the corresponding scalar and vector 
potentials in the Coulomb gauge. 
We assume that the laser is circularly polarised  with the 
following form of the vector potential LA (the laser pulse 
propagates along the z-axis in the negative direction):      
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where λL = 2π/kL is the laser wavelength, w0 the laser spot 
size, ωL=ckL the angular frequency and 

.2/)(ˆ yx ieee +=  The envelope g(r,t)s considered to be 

a slowly varying function of all variables xyz and t and is 
defined as a complex number with |g(r,t)|•1. In the case, 
for instance, of a laser pulse with a Gaussian transverse 
shape, the envelope has the form [1] 
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where z0 =  πw0

2/4λL  is the Rayleigh length and the form 
of the (real) function Φ (with  0•Φ(z)•1),   depends on the 
shape of the pulse along the z-axis. Notice that LA is 

perpendicular to the z-axis up to terms of the order of 
λL/w0,   which is consistent with the gauge requirement 

0L =⋅∇ A . 

We suppose that ),( trϕ and ),( trA  have a slow 
dependence on x and y, i.e., that they vary on a transverse 
scale LT much greater than the radiation wavelength 
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λ=2π/k and write, accordingly to the single-mode 
hypothesis frequently used in 1D treatments 
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where )(),(),( tkzietAtM ω−= rr  and ω=ck is the radiation 
angular frequency. We write the relativistic equation of 
motion of each electron in the form 
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with  rj(t)  the instantaneous position of the electron,  
Πj(t)=πj(t)-(e/c) )t(L j

)( rxAA =+  the generalized 

momentum and  πj(t)=mcpj(t)  the mechanical momentum 
in which we use the definition pj(t)=γj(t)βj(t) .                                                                                  
By projecting equation (4) on the plane transverse to the 

z-axis, we see that  ⊥jΠ   is a constant of the motion to 

dominant order in the small parameters and, as is usually 
done in 1D treatments, we shall even assume that  

0j =⊥Π  always to dominant order, which leads to the 

equation                                                
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By inserting (5) into (4) and neglecting space charge 
effects, one has 
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θ =(k+kL)z+c(kL-k)t   and the term 2| A |2 in the r.h.s. of 
(7) is usually omitted. 
The axial motion of the single particle is obtained by 
projecting Eq.(6) on the z-axis and using (4) and(7),  
which gives 
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where the phase angles θj(t) of  the  particles in the 
combined laser plus collective field are given by 
           θj(t)=(kL+k)zj(t)+c(kL-k)t          (9)                                                                
The first term in the r.h.s. of Eq.(8) gives the 
ponderomotive force exerted on the electron as it enters or 
leaves the laser pulse, while the second term is due to the 
action of all other electrons of the beam and is therefore 
responsible for collective effects and,  in particular,  the 
free-electron laser (FEL) instability. 

The transverse motion is likewise obtained by 
projecting Eq.(6) on the x,y plane. By omitting rapidly 

varying terms  simply by taking the mean value of both 
sides of this equation over the laser period, one obtains 
finally 
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As in Eq.(8), the first term to the right of (10) gives the 
ponderomotive focussing or defocussing actions due to 
the laser transverse gradients while the second term takes 
into account collective contributions to the transverse 
motion. Notice also that, due to the assumed slow 
dependence on both x and y, this last term is smaller than 
the corresponding term in the r.h.s. of Eq.(8). 

The last point consists in the derivation of an 
approximate equation for the collective vector potential 

),( trA  directly from the Maxwell equation: 
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 where the beam current density is taken in its 
microscopic form, i.e., ∑ −−=

j
jjb ))t(()t(ec rxJ δβ ,  the 

integer j running from 1 to N the total number of electrons 
of the beam. By dropping, as we have already said, the 
contribution from the scalar potential ϕ , remembering 

that A is to dominant order perpendicular to the z-axis 

and using again Eq.(5), we write  
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We neglect A with respect to AL in the driving term of 
this equation and take definitions (1) and (3) into account 
to obtain the form 
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where ωb

2 = 4πe2nb/m,  nb= N/Vb  being the average value 
of the beam volume density (Vb is the volume of the 
beam). 

 Secular terms in the perturbation treatment of the 
preceding equation can be avoided by imposing that the 
amplitude A(r,t) is a solution of the following equation 
where a continuous average of both sides over a specified 
volume Vm has been done in order to eliminate the delta 
functions and change from a microscopic to a 
macroscopic collective field  
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This equation shows the typical driving (“bunching”) 
factor                                                       
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which is similar to that appearing in the 1D version of the 
theory. The phase angles θs(t) have been defined in (9), 
while the integer s in (11) and (12) runs over all values of 
j for which, at time t and position x,                                

mjjjj Rzzyyxxr <−+−+−= 222 )()()(  if we choose Vm  as a 

sphere with radius Rm. Ns(r,t) is the number of electrons 
that satisfy the preceding inequality. 
Equations (8), (10) and (11) are our basic equations. Once 
restated using the non dimensional variables t2t Lρω=   

and xx Lk2ρ= , they may be summarized as follows: 
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with the phase angles written in non dimensional form as 
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In the preceding equations γ0 is the average value of γ 
over all electrons of the beam at t=0, 0jj / γγγ = , Pj = 

pj/γ0ρ, where 
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NUMERICAL RESULTS AND 
DISCUSSION 

We have solved equations (13)-(16) in the following 
case: the laser has a wavelength λL=0,8 micron and the 
parameter aL0 = 0.8.  The diameter of the laser focal spot 
w0 has been varied from 1000 down to a few tens of 
microns in order to analyze the dependence of the process 
on the shape of the transverse distribution of the laser 
energy. The bunch of electrons has been chosen with an 
average value of γ, <γ>=30, corresponding to an energy 
of  15 MeV. This value of <γ> leads to a resonant 
wavelength λ=2.22 Angstrom. The quantum parameter 

k
mc

h

><= γρρ  = 2  [3,4] and the classical equations (13)-

(16) are expected to be fully valid. The collective effects 
appear and saturate after 10-15 gain lengths which in our 
case correspond to times of the order of 5-7 ps (each gain 
length corresponds to Lg=110 micron), i.e., of the same 
order of the duration of the laser pulse.   

The electron beam we have considered has a mean 
radius σ0=10 micron , a total charge of 1 nC and a length 
Lb= 120 micron, so that the Pierce parameter is ρ=710-4.  
Its energy spread Δγ/γ ranges from 0 to 1.5 10-4 and the 
initial normalized transverse emittance εn has been varied 
from 0 up to 3. 

Fig 1 shows the typical growth of the collective 
potential amplitude in time, as well as the bunching 
factor. The amplitude of the vector potential |A|2 has been 
calculated in the middle of the electron bunch at the 
position zm =<z> and averaged on the transverse plane. 

In this case w0= 500 micron, εn=1,11 mm mrad and the 
signal saturates at t=5 psec. 

Figures 2 gives the level curves of the potential 
amplitude |A|2 in a transverse plane x,y in the electron 
frame of reference and  in the middle of the electron beam 
vs time. The case shown has been obtained with εn=1,85 
mm mrad and w0=500 micron. The transverse increase of 
the radiation spot is substantially due to the divergence of 
the electron beam, because the Rayleigh length ZR of the 

0 1 2 3 4 5 6
0

1

<|A|2>
|b|

t(psec)

  
Figure 1: |A|2(zm) averaged on the transverse section vs t 
in psec and |b|  for w0= 1000 �m, �n=1,11 mm mrad. 
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Figure 2: (a)number of time steps 200, (b)400, (c)600, (d) 
800. 
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Figure 3: |A|2  and the bunching |b| after 900 time steps. 

radiation is very much larger than the gain length  Lg so 
that the radiation diffraction can be neglected. This can 
also be seen from the scaled equations (15) and (16), 
where the very small parameter η multiplies respectively 
the collective term in the transverse momentum equation 
(15) and the diffraction term in the wave equation (16). 
From these figures one can also see that the initial jagged 
shape of the intensity changes in time, smoothing itself 
and tending to assume a central peaked form.  

In Fig. 4 the dependence of the maximum of <|A|2> on 
the transverse normalized emittance  is shown, while in 
Fig. 5 the typical spectrum of the radiation is presented.  
It has to be noted that the spectrum bandwidth is 
considerably larger than in the 1D case as is shown in  
Fig. 5, where the curve with εn=1,11  presents <δω/ω> =4 
10-3 ,a factor of 10 larger than ρ.  We must note that we 
have considerable emission also in violation of the 
Pellegrini criterion for a static wiggler. In fact, the 
emittances considered exceed largely the value 
γλ/4π, which in this case is 5,5 10-4 μm. On the other 
hand, on the fact that ZR/Lg=5,6 104, the criterion of 
Pellegrini can be rewritten in a generalized form for both 
static and optical undulators as πγλαε 4// RgRn LZ≤  [5] 

where α= 10)/( ≈ωρωd , giving the more relaxed limit 
εn<0,43μ. 

The shape of the spectrum which is similar to a 
function sinc2x=(sinx/x)2 is due to the sharp z-dependence 
of the electron distribution. The last figure 6 shows the 
most critical effect, i.e., the dependence of the growth of 
the signal on the transverse energy distribution of the 
laser pulse. In fact a spot size with a diameter smaller 

than 100 micron, for instance, does not seem to lead to 
any FEL like instability. The collective signal in this 
condition, therefore, does not grow. A possible remedy 
could be the development and use of laser beams with flat 
transverse energy distributions. 
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Figure 4: |A|2max versus εn for w0=500. 
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Figure 5: |A|2max vs δω/ω for εn=0 and εn =1.11 (w0=500). 
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Figure 6: |A|2max versus w0 for εn =0. 
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