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Abstract

High-gain free electron lasers (FEL) are being developed
as extremely bright x-ray sources of a next-generation ra-
diation facility. In this paper, we review the basic the-
ory and the recent progress in understanding the startup,
the exponential growth and the saturation of the high-gain
process, emphasizing the self-amplified spontaneous emis-
sion (SASE). We will also discuss how the FEL perfor-
mance may be affected by various errors and wakefield ef-
fects in the undulator.

INTRODUCTION

Free electron lasers (FEL) hold great promises
as tunable-wavelength, high-power coherent radiation
sources. In the x-ray wavelength range (from a few nm
down to 1 Angstrom or below) where no quantum laser ex-
ists, a high-gain FEL operated in the self-amplified spon-
taneous emission (SASE) mode can in principle generate
multi-gigawatts and femtosecond coherent x-ray pulses.
Tremendous progress in accelerator and FEL technolo-
gies has been made in past years towards such a “fourth-
generation” radiation facility, demonstrated by the success-
ful SASE FEL experiments at visible and ultraviolet wave-
lengths [1, 2, 3]. As a result of intense R&D, several x-ray
FEL projects are either under construction or being pro-
posed (see, e.g., Refs. [4, 5, 6]). This paper reviews the re-
cent progress in understanding high-gain FELs in general
and SASE FELs in particular.

BASIC CONSIDERATIONS

Despite the fact that the first FEL theory is based on a
quantum mechanical analysis [7], all operating and pro-
posed FEL devices can be adequately described by the clas-
sical theory. The quantum recoil is insignificant as the ra-
tio of the photon energy to the electron energy is usually
much smaller than the FEL gain bandwidth (typically on
the order of 10−2 to 10−3). The quantum effect may be im-
portant when an extremely bright and low-energy electron
beam interacts with an energetic photon pulse in a laser un-
dulator. This regime has been studied recently in Ref. [8].

The electrons wiggle in the periodic magnetic field cre-
ated by an undulator can resonantly exchange energy with
an external radiation or with the spontaneous emission of
these electrons. The resonant condition for the fundamen-
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tal undulator radiation (i.e., the first harmonic) is
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where K0 = 0.94B0[Tesla]λu[cm] is the dimensionless
undulator strength parameter, B0 is the peak magnetic field,
λu = 2π/ku is the undulator period, and γ0mc2 is the aver-
age electron energy. For a sufficiently bright electron beam
and/or a sufficiently long undulator, this resonant interac-
tion leads to an exponential growth of the radiation power
until it reaches a saturation level. A very important scal-
ing parameter for a high-gain FEL is the Pierce parameter
ρ defined by [9]
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where the Bessel function factor [JJ]=J0(ξ) − J1(ξ) with
ξ = K2

0/(4 + 2K2
0 ) for a planar undulator, kp =√

2Ie/(γ3
0IAσ2

x) is the longitudinal plasma oscillation
wavenumber, Ie is the electron peak current, IA ≈ 17 kA
is the Alfvén current, and σx is the rms transverse size of
the electron beam. For instance, the electric field amplitude
gain length is approximately Lg = (2ρku)−1 = λu/(4πρ),
the relative FEL bandwidth at saturation is close to ρ, and
the saturation power is about ρ times the electron beam
power.

As the current density of the electrons is modulated by
the FEL interaction around the resonant wavelength λ1, the
longitudinal space charge force between electrons tends to
counteract the bunching action if the reduced plasma os-
cillation wavelength k−1

p is comparable to the FEL gain
length Lg = (2ρku)−1. Examination of Eq. (2) for K ∼ 1
shows that this condition requires that kp → ku and that
ρ → 1. In typical short-wavelength FELs using high-
energy electron beams, ρ ∼ 10−3, hence we can neglect
self-interactions of the electron beam around the FEL res-
onant frequency and focus on beam-radiation interaction.

The beam-radiation interaction occurs in a vacuum pipe
(or an in-vacuum undulator structure). The presence of a
metallic surface may modify characteristics of both the ra-
diation and the electron beam. In fact, the first SASE FEL
operating in the millimeter wavelength region employed a
waveguide to confine the radiation against diffraction [10].
For a high-gain FEL at visible or shorter wavelengths, the
transverse size of the radiation is usually much smaller than
the pipe radius. Thus, we can neglect the boundary condi-
tion on the transverse radiation mode. Nevertheless, the in-
teraction of the vacuum pipe with the high-current electron
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beam creates a wakefield that changes the beam properties
along the bunch. Effects of the wakefield on the FEL inter-
action may be significant for x-ray FELs employing long
undulator systems and will be discussed in this paper.

OVERVIEW OF HIGH-GAIN THEORY

FEL pendulum equations

In the so-called ponderomotive potential of the com-
bined undulator and radiation fields, the longitudinal elec-
tron motion can be described by a relative energy variable
η = (γ − γ0)/γ0 � 1 and a ponderomotive phase variable
θ = (k1 + ku)z − ω1t

∗, where ct∗(z) is the undulator-
period-averaged electron arrival time at the undulator dis-
tance z. The rate of the energy exchange with a transverse
radiation field is

dη

dz
=

eK0[JJ]
4γ2

0mc2

∫
dωEω(x; z)eiωθ/ω1 + c. c. , (3)

where Eω is the transverse radiation field (at a frequency
ω ∼ ω1) that is slowly varying in z, x = (x, y) represents
the transverse coordinates, and c. c. stands for complex
conjugate. The rate of the ponderomotive phase change is

dθ

dz
= k1 + ku −

k1
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= ku − k1
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0/2

2γ2
− k1

2
β2
⊥ , (4)

where cβ‖ is the average longitudinal velocity, and cβ⊥ is
the transverse velocity due to the betatron motion. In the
absence of any betatron motion (when β⊥ = 0), inserting
the resonant condition Eq. (1) into Eq. (4) yields

dθ

dz
= 2kuη . (5)

Equations (3) and (5) are recognized as the FEL pendulum
equations [11]. An initially unbunched beam in the pon-
deromotive potential develops an energy modulation at the
radiation wavelength. The energy modulation is turned into
a current modulation that leads to exponential amplification
of the radiation field in a long undulator.

Since the FEL interaction is a resonant energy exchange
between the electron and the radiation field, the evolution
of electrons’ ponderomotive phase may affect the FEL per-
formance critically. For example, the betatron motion of a
finite-emittance beam introduces an intrinsic phase spread
through β⊥ for the electrons at the same longitudinal po-
sition. A deviation of the undulator parameter K from the
design value and a change in electron beam energy due to
wakefield effects can also change the ponderomotive phase
along the undulator distance. The effects of beam quali-
ties on the FEL performance will be discussed next, while
the effects of undulator qualities and wakefield will be dis-
cussed in the following section.

Solutions in the small signal regime

For a high-gain FEL, the equations of motion for an elec-
tron beam must be solved together with the Maxwell equa-

tion for the radiation field. In the small signal regime be-
fore saturation, the FEL equations are solved in the one-
dimensional (1-D) case taking into account the SASE start-
up from shot noise in the electron beam [12, 13]. Three-
dimensional (3-D) diffraction effects can be included us-
ing Moore’s guided modes [14] and can be extended to the
SASE case [15, 16]. In general, the radiation field can be
written as

Eω(x; z) =
∑

n

CnEn(x)e−iμn2ρkuz , (6)

where En describe the transverse profile of the nth eigen-
mode, μn is the complex growth rate corresponding to
this eigenmode, and Cn is the mode expansion coefficient
found by solving the initial value problem. In the high-gain
regime a Gaussian-like fundamental mode with the largest
growth rate (largest Imμ0) dominates over other higher-
order modes, i.e.,

Eω(x; z) ≈ C0E0(x)e−iμ02ρkuz when 2ρkuz � 1 .
(7)

Thus, the transverse profile of the radiation appears to be
frozen with an exponentially growing amplitude.

One of the most important FEL design parameters is the
power gain length of the fundamental mode given by

LG =
λu

8(Imμ0)πρ
≡ LG0(1 + Λ) , (8)

where LG0 = λu/(4
√

3πρ) is the 1-D power gain length
of a monoenergetic beam. Taking into account beam en-
ergy spread, emittance and focusing, as well as radiation
diffraction and guiding, a universal scaling function and
an approximate variational solution for LG is obtained in
Ref. [17]. Based on numerical studies of the FEL eigen-
mode equation, Xie obtains a very useful fitting formula
for Λ (and hence LG) at the optimal frequency as [18, 19]:

Λ =a1η
a2
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a4
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a8
ε ηa9

γ

+ a10η
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d ηa12
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(9)

Here the three scaled parameters are

ηd =
LG0

2k1σ2
x

(diffraction parameter) ,

ηε =
LG0

β̄

ε

λ1/(4π)
(angular spread parameter) ,

ηγ =4π
LG0

λu
σδ (energy spread parameter) , (10)

where ε is the rms transverse emittance, β̄ is the average
beta function, and σδ is the relative rms energy spread. The
fitting coefficients are

a1 = 0.45 , a2 = 0.57 , a3 = 0.55 , a4 = 1.6 , a5 = 3 ,

a6 = 2 , a7 = 0.35 , a8 = 2.9 , a9 = 2.4 , a10 = 51 ,

a11 = 0.95 , a12 = 3 , a13 = 5.4 , a14 = 0.7 , a15 = 1.9 ,

a16 = 1140 , a17 = 2.2 , a18 = 2.9 , a19 = 3.2 . (11)
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Figure 1: GINGER (black) and GENESIS (blue) simula-
tions of the LEUTL FEL energy at 130 nm versus the undu-
lator distance z, as compared from predictions of Eq. (13)
with 3-D noise (red) and 1-D noise (green).

The discrepancy between Xie’s fitting formula and numer-
ical solutions of the FEL eigenmode equation is typically
less than 10%. These positive coefficients show that all
three scaled beam parameters in Eq. (10) should be kept
small to avoid a large gain reduction, corresponding to the
well-known requirements for the beam quality.

Including the frequency-dependence of the complex
growth rate in Eq. (7) and integrating over the transverse
coordinates, we obtain the FEL power spectrum in the
high-gain regime as

dP

dω
= gA

(
dP0

dω
+ gS

ργ0mc2

2π

)
exp

(
z

LG
− Δω2

2σ2
ω

)
,

(12)
where dP0/dω is the input power spectrum, ργ0mc2/(2π)
is the 1-D SASE noise power spectrum [15] and can be in-
terpreted as the spontaneous undulator radiation in the first
two power gain length [20], and σω is the SASE bandwidth
that decreases with z up to the FEL saturation point (with a
typical value ρω1). gA and gS determine the input coupling
to the fundamental mode and the effective noise in units of
ργ0mc2/(2π), respectively. gA = 1/9 and gS = 1 in the 1-
D, cold beam limit [12, 13] and are computed for a general
beam distribution in 3-D in Refs. [21, 22]. Integrating the
SASE term over the frequency, we have the average SASE
power as

P = gAPn exp
(

z

LG

)
. (13)

Here Pn = gSργ0mc2σω/
√

2π is the effective noise power
for SASE. The agreement between time-dependent SASE
simulations using GINGER [23] and GENESIS [24] and
Eq. (13) are very good when the proper input coupling co-
efficient and effective noise power (i.e., gA and gS) are
calculated, as shown in Fig. 1 for the LEUTL FEL [1] at
λ1 = 130 nm. Note that GENESIS is a 3-D code that do
not assume azimuthal symmetry in the radiation profile and
hence excite many more higher-order modes in the start-up
regime.

Transverse coherence and mode size

Since the fundamental transverse mode possesses the
largest growth rate and dominates over other higher order
modes with smaller growth rates in the high-gain regime,
the SASE FEL can reach almost full transverse coherence
before saturation, even when the emittance of the electron
beam is larger than the diffraction-limited radiation emit-
tance λ1/(4π) as found in most current x-ray FEL de-
signs. The frequency-dependency of the fundamental mode
within the finite SASE bandwidth introduces a small in-
crease of the radiation emittance [25, 26], which is negligi-
ble for x-ray FELs.

In general, the transverse mode size (and angular diver-
gence) requires numerical solutions of the FEL eigenmode
equation. Two simple limiting cases can be discussed here.
In the large e-beam cross section limit assuming that the
electron microbunching is more or less uniform along the
transverse directions, the transverse profile of the radiation
field is proportional to the transverse profile of the elec-
tron density. Thus, the rms spot size of the radiation inten-
sity is about

√
2 smaller than the rms transverse size of the

electron beam [27]. This is typically the case for an x-ray
FEL such as the LCLS with the electron emittance larger
than the radiation emittance. On the other hand, in a visi-
ble or infrared-wavelength FEL using electron beams with
emittance smaller than the radiation emittance, the radia-
tion mode size tends to be larger than the electron trans-
verse size due to the diffraction effect. In this small e-beam
cross section limit, the rms spot size of the radiation is in-
dependent of the e-beam size and can be estimated as

σr ≈
√

λ1

4π
2LD

G , where LD
G ≈

λu

4π

√
γ0IA

Ie

1 + K2
0/2

K2
0 [JJ]2

is the power gain length in the diffraction-dominated
regime [17].

Temporal characteristics

Due to the noisy startup, the temporal property of a
SASE FEL is that of a chaotic light [28, 29, 30]. In
the time-domain a SASE pulse of duration T consists of
M = T/τc independent spikes (modes), characterized by
the coherence time [29, 30]

τc =
√

π

σω
. (14)

For an x-ray FEL at λ1 ≈ 1 Å, the coherence time can
be as short as a few hundred attoseconds, opening up the
possibility of selecting a single attosecond spike for the
ultra-fast scientific applications (see, e.g., Refs. [31, 32]).
The intensity of each temporal spike fluctuates 100% for a
transversely coherent radiation.

The full SASE spectral width is about 2
√

πσω, consist-
ing of also M independent modes. Each frequency mode
is characterized by the spectral coherence range 2π/T and
its intensity also fluctuates 100%. Integrating the intensity
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over time or frequency, the statistical fluctuation of the to-
tal radiated energy is reduced by

√
M , which is usually a

large factor for an x-ray SASE FEL.
For a frequency-chirped SASE generated by an energy-

chirped electron beam, the coherence time is independent
of the chirp as long as the frequency span within a tempo-
ral spike is smaller than its bandwidth, while the spectral
coherence range increases linearly with the chirp [33]. A
narrow-bandwidth monochromator may be used to select a
much shorter section of the chirped x-ray pulse (see, e.g.,
Ref. [34]).

Nonlinear harmonic generation

The FEL interaction introduces both energy and density
modulations (microbunching) of the electron beam. Before
saturation strong bunching at the fundamental frequency ω1

produces rich harmonic bunching and significant harmonic
radiation in a planar undulator [35, 36]. A 3-D analysis
of nonlinear harmonic generation [37] shows that the gain
length, transverse and temporal properties of the first few
harmonics are eventually governed by those of the funda-
mental after a certain stage of exponential growth. For ex-
ample, driven by the third power of the radiation field in
the fundamental, the third nonlinear harmonic grows three
times faster, has an equally coherent transverse mode (with
a smaller spot size), and has a more spiky temporal struc-
ture than the fundamental radiation of a SASE FEL. The
more pronounced temporal spikes of these nonlinear har-
monic radiation may enable selections of a shorter tempo-
ral pulse with the highest intensity [38]. As a numerical
example, Ref. [37] calculates the third harmonic power (at
0.5 Å) of the LCLS can reach almost 1% of its fundamen-
tal power at 1.5 Å, extending the wavelength reach of this
x-ray source. The power of the second-harmonic radiation
is much reduced for x-ray FELs but may still be signifi-
cant for long-wavelength FELs using relatively low-energy
electron beams [39, 3].

Saturation

Together with the development of the microbunching,
the energy spread of the electron beam increases and even-
tually stops the exponential growth, and the FEL reaches
saturation at about zsat ≈ λu/ρ ≈ 20LG for a typical SASE
FEL. The effect of energy spreading can be included using
a quasi-linear approximation that determines the saturation
power [40], which agrees reasonably with a simulation fit-
ting formula given by [18]

Psat ≈ 1.6
(

LG0

LG

)2

ρPbeam =
1.6

(1 + Λ)2
ρPbeam , (15)

where Λ is defined in Eq. (8), and Pbeam[GW] =
(γ0mc2/e)[GV]Ie[A] is the total electron beam power.

The radiation characteristics after saturation are more
complex, especially for SASE FELs. The FEL bandwidth
starts to increase due to the appearance of sidebands as-
sociated with synchrotron oscillations of electrons trapped

in the ponderomotive potential [41]. In general both the
transverse and the temporal coherence decrease with the
undulator distance in the saturation regime. Although the
fluctuation of the total radiated energy is also reduced af-
ter saturation, the fluctuation of a single frequency mode
filtered by a monochromator is still 100% just as in the ex-
ponential growth regime [29]. An analytical model that re-
produces such a statistical fluctuation in the early saturation
regime is recently developed in Ref. [42].

UNDULATOR ERRORS AND
WAKEFIELDS

The design of a typical x-ray FEL calls for a small-
gap undulator system of about a hundred meter in length.
For technical feasibility, the long undulator beam line is
divided into many undulator segments and beam focus-
ing/diagnostic sections. Errors in undulator field qualities
and electron beam steering can degrade the FEL perfor-
mance. In addition to these errors, wakefields induced by
a high-current beam in the small-gap vacuum chamber can
also interfere with the FEL gain process. In this section, we
discuss how the FEL theory may be applied to study these
effects.

Undulator errors

We will assume that each undulator segment is shimmed
to have vanishing first and second magnetic field integrals
(no net steering errors) and focus on the variations of the
undulator parameter K due to magnetic field errors or
transverse misalignments among segments (since K is a
function of transverse coordinates). Using the 1-D FEL
equations, Yu et al. [43] study the effect of undulator errors
on the ponderomotive phase, which can be obtained from
Eq. (4):

dθ

dz
=ku − k1

1 + (K0 + ΔK)2/2
2γ2

≈2kuη − ku
K0ΔK(z)
1 + K2

0/2
. (16)

Here the first term describes the usual pendulum motion,
and the second term determines the amount of the phase
kick due to small changes in K. For undulator errors, we
can model ΔK(z) = ΔKn for (n − 1)Lc < z < nLc

(n = 1, 2, 3, ...), where ΔKn is a random quantity with
〈ΔKn〉 = 0 and the correlation length Lc = Ncλu is as-
sumed to be much shorter than the approximate field gain
length Lg = λu/(4πρ). Then the net phase shift per gain
length is

δθ =
Lg/Lc∑
n=1

Nc
2πK0ΔKn

1 + K2
0/2

. (17)
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Figure 2: Power degradation factor P/P0 at FEL saturation
versus σK/K0 in the LCLS 33 undulator segments. Here
σK is the rms value of a uniform segment K̄ error distrib-
ution. Five random error distributions are used for a given
σK . The rms width of the Gaussian fit is 4.2× 10−4.

For Lg/Lc � 1, δθ has a zero mean and a variance
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(18)

A perturbation analysis yields the radiation power as [43]

P ≈ P0 exp
(
−2W

9
z

Lg

)
, (19)

where P0 is the power without errors.
For a negligible power degradation near the SASE satu-

ration at z ≈ 10Lg , the mean square of the ponderomotive
phase shift per gain length W � 1. For errors associated
with magnetic pole field B0 that may occur every undulator
period, Nc ∼ 1, then we have [43]

σB0

B0
<

√
ρ

4π
. (20)

Hence the pole field error tolerance is quite relaxed because
it scales as

√
ρ instead of ρ. On the other hand, if the length

of the undulator segment is a significant fraction of Lg as in
the LCLS case, the error in the average undulator parameter
K̄ per segment is now correlated over Nc → (4πρ)−1.
Although the perturbation analysis is not strictly valid in
this case, Eq. (18) suggests that the error tolerance for K̄ is

σK

K0
< ρ . (21)

The LCLS has the FEL parameter ρ ≈ 5×10−4 and 33 un-
dulator segments (each with 3.4 m in length) [4]. Figure 2
shows that the GENESIS SASE simulation results for the
LCLS undulator segment K̄ errors is in qualitative agree-
ment with the requirement of Eq. (21).

µ

µ

µ

µ

Figure 3: GENESIS simuluation of the LCLS far-field
power for various quadrupole offsets Qx at z = 40 m.

Beam trajectory errors

The effects of non-straight beam trajectory may be illus-
trated with a heuristic 3-D model when an microbunched
beam is kicked by an error dipole field (e.g., a misaligned
quadrupole) [44]. While the direction of the beam trajec-
tory changes after the kick by a deflecting angle φ, the
wavefront orientation normal to the microbunching plane
does not. This discrepancy results in two mechanisms for
gain degradation: a decrease in coherent radiation effi-
ciency and an increased smearing of microbunching due
to the intrinsic angular spread. Both mechanisms are char-
acterized by a critical angle [44]

φc =
√

λ1

LG
(22)

as the power gain length after the kick becomes approxi-
mately LG/(1 − φ2/φ2

c). In the LCLS case, φc ≈ 6 μrad
at λ1 = 1.5 Å for LG ≈ 4 m. For quadrupoles equally
spaced among the LCLS undulator segments, the rms tra-
jectory angle should be controlled to within 1 μrad in order
to guarantee a negligible gain reduction.

Since a sufficient trajectory distortion can destroy the
FEL interaction, kicking the beam at selected undulator lo-
cations may facilitate the z-dependent FEL power measure-
ments using a single diagnostic station at the end of the un-
dulator beam line. This technique is especially useful when
intra-undulator FEL diagnostic stations become difficult.
We study this trajectory distortion method for the LCLS
z-dependent power measurement with GENESIS simula-
tions. For a quadrupole with a focal length f = 10 m, a
small horizontal offset Qx = 60 μm corresponds to a kick
angle φ = Qx/f = φc. Figure 3 shows that a quadrupole
at z = 40 m with a horizontal offset Qx ≥ 60 μm (i.e.,
a kick angle φ ≥ φc) inhibits further growth of the FEL
fundamental mode, producing an approximately constant
on-axis radiation intensity which may be detected by a far-
field x-ray diagnostic station after the undulator. Similar
conclusions hold at other undulator locations in the expo-
nential growth regime.
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Wakefield effects

As mentioned earlier, a high-current electron bunch in-
duces a short-range wakefield that changes the beam prop-
erties in the long undulator line. For the LCLS, the domi-
nant (longitudinal) wakefield is caused by the resistive wall
of the vacuum pipe [45] and creates an energy variation
along the undulator distance as well as along the bunch po-
sition. Since the typical bunch length for an x-ray FEL
greatly exceeds the radiation slippage length over the en-
tire undulator, the energy variation within an FEL slippage
length (known as an FEL slice) is usually negligible for the
wakefield that do not vary rapidly inside the bunch. Thus,
the main effect of the undulator wakefield is due to a sig-
nificant energy variation along the undulator distance and
is equivalent to that caused by tapering the undulator pa-
rameter for a particular FEL slice. The last point can be
shown by rewriting the phase Eq. (4) as

dθ

dz
= 2ku

[ γ(z)− γc(z)
γ0︸ ︷︷ ︸
≡ η

+
γc(z)− γ0

γ0︸ ︷︷ ︸
≡ δ

]
, (23)

where η(z) is now the energy deviation from the beam cen-
tral energy γcmc2 and is still governed by Eq. (5) due to the
FEL interaction, and δ(z) is the wakefield-induced energy
change relative to the initial energy γ0mc2 for this FEL
slice. Equation (23) is the same as Eq. (16) if

δ(z) = −K0ΔK(z)
(2 + K2

0 )
≈ −ΔK(z)

K0
, for K2

0 � 2. (24)

Note that δ here is not a randomly fluctuating quantity as
was the case for undulator errors. Instead, δ is a linear func-
tion of z for wakefield induced energy change or a linear
taper of the undulator parameter.

In general δ(z) is not small but can be considered as
slowly varying if the fractional energy change per field gain
length is less than ρ. In the small signal regime before sat-
uration, the WKB approximation can be used to solve the
FEL equations and to obtain the SASE power as [46]

P (z) ≈ Pm(z) exp

[
−1

2

(
δ(z)− δm(z)√

3σω(z)/ω1

)2
]

, (25)

where Pm is the maximum power at the optimal energy
change δm or an equivalent undulator taper. For the LCLS,
a fractional energy increase of 2ρ over the saturation dis-
tance zsat ≈ 90 m improves the saturation power by about
a factor of 2 as compared to the nominal saturation power
without any external energy change or taper (e.g., that
given by Eq. (15) or FEL simulations in absence of wake-
field and taper). Since the FEL bandwidth σω(zsat)/ω1 is
close to ρ, Eq. (25) indicates that the SASE power has a
FWHM in δ ≈ 4ρ at saturation.

For a given wake energy variation as a function of the
bunch coordinate, Eq. (25) can be used to obtain the FEL
power along the bunch position and to yield the average
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Figure 4: Power degradation factor averaged over the core
part of the bunch (with about 30 μm in length) versus the
sinusoidal wake oscillation amplitude δA/ρ at the LCLS
saturation (z = 90 m) for a prescribed tapered undulator
(in red) and without any taper (in blue) (from Ref. [46]).

SASE power over the bunch. As a numerical example,
Ref. [46] considers a sinusoidal energy oscillation that re-
sembles the resistive wall wakefield in the core part of the
1-nC-charge LCLS bunch [45]. Figure 4 shows the aver-
age power degradation factor (with respect to the maximum
power Pm) as a function of the fractional energy oscillation
amplitude δA with and without a linear taper that yields
δm = 2ρ over zsat. For a round 5-mm-diameter vacuum
pipe, δA ≈ 6ρ for Cu and 3ρ for Al at zsat = 90 m, then
the average power in this part of the bunch is about 50 %
(25 %) of Pm for Cu (Al) vacuum pipe, insensitive to the
undulator taper for large energy oscillation amplitudes as
shown in Fig. 4. To take advantage of the power enhance-
ment due to the above taper, a 200-pC-charge bunch config-
uration with a much reduced wakefield amplitude is studied
for the LCLS [47]. The FEL simulation results are found
to agree with the theoretical prediction.

CONCLUSIONS

This paper reviews the recent progress in understanding
and quantifying the high-gain FEL behaviors in both ideal
and more realistic accelerator environment. These theoret-
ical models provide physical pictures, benchmark simula-
tion codes, and guide the FEL designs and experiments.
The intense efforts in realizing x-ray FELs and enhancing
their performance will stimulate further theoretical devel-
opments in this area.
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