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Abstract
Self consistent beam dynamics calculations are de-

scribed that account for space charge compensation
in low energy, high intensity proton beams (100 mA,
100 keV) which propagate through a gaseous medium.
For this purpose we have used a plasma description of
the beam. Kinetics equations which govern the sec-
ondary particles behavior are derived in a 1D model.
From their expressions we have looked into and dis-
cussed the existence of stationary solutions . We have
also done numerical work to build up a solution where
no assumptions are made on the thermalization of the
created neutralizing electrons. The calculation tech-
nique consists of an explicit computation code using a
PIC method. The diagnostics consist in snapshots in
the phase space. They enable to identify the different
steps of the space charge compensation mechanism.
The energetic spectra of the particles reaching the wall
have been obtained in order to make comparisons with
experimental results.

1 INTRODUCTION

When an ion beam is extracted from a plasma cham-
ber it propagates through a residual gas that comes
mainly from the source. Ionization takes place inside
the bulk of the beam due to collisions between the ions
and the residual gas molecules. This creates a plasma
which spreads around the beam. To understand how
the beam propagates in such a medium we have to
get a precise knowledge of the medium itself, our goal
is then to modelize and simulate the behavior of the
plasma.

In this paper we are interested in proton beams gen-
erated continuously. We seek for a stationary state
of the plasma. The work presented here relates a
modelization and a numerical resolution that account
for the evolution of the plasma towards a stationary
state and find out a necessary condition of existence
of such a state. Diagnostics of this simulation can
be compared to experimental measurements realized
on the same kind of beam for the project APT at Los
Alamos, USA [1] and at Francfort University for heavy
ion beams [2]. This work is a part of theoretical and
numerical researches which are to be applied to the
project IPHI led at CEA-SACLAY, France.

2 SPACE  CHARGE  COMPENSATION

In the low energy section of a linear proton accelera-
tor facility the residual gas is mostly hydrogen, it is
at the room temperature T = 300 K and its pressure
is around P = 10−5 torr. For the type of beam con-
sidered, with transverse section S = 1 cm2 the gas
density ng ' 3.1011 cm−3 is 300 times greater than
the beam density nb. The plasma created reaches a
density of the order of nb after a time short enough to
neglect the decreasing of gas density due to ionization.

Ionization is one of the most important microscopic
process between beam ions and gas molecules and it
is the only binary interaction that we will take into
account in our model. The rate of production of elec-
trons and residual gas ions depends on its cross section,
σi:

∂ne,i

∂t
= σivbnbng =

nb

τi

where ne, ni denotes the electron and ion density, vb

is the beam velocity and τi is called the characteristic
time of ionization; after t = τi as much pair of electron
and ion have been produced as there are beam ions in
a given volume. For a beam energy W = 100 keV ,
σi = 2.10−16 cm2 and τi ' 30 µs. On this time scale
recombinations of ions and electrons can be neglected.

In the beam potential, residual gas ions fall freely to
the walls of the accelerator where they are absorbed.

Electrons are trapped in this potential. Since the
production rate of ions and electrons is the same the
total electric charge in the beam starts decreasing as
soon as the beam enters the gaseous medium.

The self-consistent potential will decrease with the
charge density. The ions are accelerated by a lower
potential and will reach the walls slower and slower,
consequently their density will increase, as electron
density will do. Some electrons produced with high
kinetic energy will be able to escape from the poten-
tial well and reach the walls where they are absorbed.

This monotonic evolution will continue but will not
reach a state of negative charge density. Such a state is
unstable because all electrons would escape fastly from
the beam core whereas the ions staid in the beam. We
can define the neutralization rate as follows:

ζ = 1 − ρtotal

ρb
= 1 − < nb > + < ni > − < ne >

< nb >

1300



Figure 1: Physical system.

where ρtotal and ρb are respectively the total and the
beam charge densities, < n > denotes the mean value
of the particle density n in the beam. According to the
previous description, during the plasma generation ζ
will tend to 100 %, this means that the space charge
of the beam will be fully compensated or neutralized.

Experimental measurements have shown that ζ
reaches a value standing between 95 % and 99 % and
remains stable. This observation leads us to look for
stationary states of the plasma responsible for this par-
tial space charge compensation. To achieve this we
will modelize its evolution and find out the stationary
limits of the model derived.

3 MODELIZATION

Geometry. Let us consider a cold, continuous and
non divergent beam. We modelize the propagating
medium as a longitudinally infinite canal of gas, with
uniform density ng confined transversally between two
infinite plane walls distant of 2R. The beam thickness
is 2a ' 1 cm; the beam is symmetric with respect
to the symmetry plane of the canal (figure ??). The
system is then longitudinally invariant, and we will
derive a 1D transverse model.

Kinetic description. Both populations of ions and
electrons are described with their distribution function
fi(t, x, v) and fe(t, x, v) in the phase space (x,v), where
x is the transverse position and v is the transverse ve-
locity. We assume that the plasma is a non collision-
nal medium. Under this assumption the distribution
functions obey the Vlasov equations. Because of ion-
ization there will be a source of particles inside the
phase space, this will be modelized with a source term
which will be the rate of production of particle per
unit of phase space volume; thus the kinetic equations
for each species will be written:

∂fe

∂t
+ v

∂fe

∂x
+

e

me

∂φ

∂x

∂fe

∂v
=

(
∂fe

∂t

)
ioniz

(1)

∂fi

∂t
+ v

∂fi

∂x
− e

mi

∂φ

∂x

∂fi

∂v
=

(
∂fi

∂t

)
ioniz

(2)

where e is the proton charge, me, (resp. mi) is the
mass of one electron (resp. one ion), and φ is the elec-
tric self-consistent potential. Since there is no particle
emission on the walls, the limit conditions for the ki-
netic equations can be written as:

fe,i(t, R, v) = 0, v < 0, and fe,i(t,−R, v) = 0, v > 0

Ionization rate in the phase space is obtained by
weighting the ionization rate in the real space with the
probability density of initial transverse velocity com-
municated to a particle immediatly after its birth. The
source term then reads:(

∂fe,i

∂t

)
ioniz

= σingnbvbSe,i(v)

where Se,i(v) are these normalized probability densi-
ties. They can be computed from the measurement of
Nagy and Vegh [4] or approximated with usual func-
tions. We usually assume that an ion is emitted with
a random velocity corresponding to the thermal mo-
tion of the molecules and that an electron receives a
random kinetic energy of a few eVs.

Finally these two kinetic equations are coupled
through the potential which obeys the Poisson equa-
tion:

−∂2φ

∂x2
=

e

ε0
(nb(x) +

∫
fidv −

∫
fedv)

we impose φ(0) = 0 and the symmetry of the system
involves ∂φ

∂x (0) = 0 as a limit condition.
This mathematical formulation modelizes the evo-

lution of the plasma from the initial time where it is
taken in an arbitrary state represented by two initial
distribution functions f0

i and f0
e . We are interested in

the invariants of this model , they will represent the
stationary states of the plasma.

4 NUMERICAL  RESOLUTION
Principle. We use a particle method to solve the
model. At each time step macroparticles of each
species are added to the particle lists to simulate ion-
ization. They are moved in the self-consistent electric
field by using a leap-frog scheme. The time step is
fixed in such a way that the sampling of electron os-
cillation remains stable:

∆t =
∆x

V MAX

where V MAX is the estimated value of the maximum
velocity of electrons in the system. The simulation
will then be run on a typical number of time step
Nt = τi

∆t in order to show a significant evolution. To
limit the time of computation we will decrease τi by
imposing a higher gas pressure. We will also choose
other beam parameters to decrease the beam poten-
tial so that V MAX which is reached by electrons ac-
celerated in the uncompensated beam will not be too
high.
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Figure 2: A stationary state of the neutralizing
plasma. The radius of the beam is delimited with
dashed lines. The beam potential difference between
the core and the edge is ∆φ ' 50V . Then the neutral-
ization rate here is 80%.

Necessary condition of existence of a stationary
state. To reach a stationary state it is necessary that
electrons be emitted with a minimum kinetic energy:

G =
1
2
mev

2
thresh > 0,

where vthresh = inf{v:Se(v)>0}|v|. We call G the gap.
In this case, once the potential barrier is smaller than
G every emitted electron will be able to reach the wall
and their density will stabilize. Otherwise some elec-
trons will always be trapped in the potential well and
their density will tend to infinity. The mathematical
proof of this necessary condition has been obtained
in [3] and is based on the resolution of the station-
ary Vlasov equation with the method of characteristic
curves in phase space.

Stationary State. We have run the simulation with
the following parameters: beam energy W = 200 keV ,
beam current I = 20 mA, gas pressure P = 2.10−3torr
and with Se(v) choosen in such a way that G = 10 eV .
The system tends to an equilibrium presented in figure
??. There was no particles at the beginning of this
simulation (f0

i = f0
e = 0).

In the electronic phase space one can identify two
different populations of electrons: the more numerous
electrons are trapped in the potential well and fill the
low energy levels, the others have just been emitted,
they are slowed down until they reach the wall.

Energetic spectra Diagnostics of the distribution
function versus kinetic energy have been obtained (fig-

Figure 3: Energetic spectra of ions and electrons

ure ??). As for ions this diagnostic is computed at the
wall and it can be directly compared to the derivative
of their current measured in a four grid analyser with
respect to their energy ([1]).

As for electrons this curve is computed at the center
and shows how trapped electrons are distributed in the
low energy levels.

5 CONCLUSION
A simulation of space charge compensation evolution
has been realized which enable to understand the neu-
tralization and the trapping of electrons. A description
of stationary states has been obtained.

Further works underway concern the investigation of
physical reasons for stationary states in three different
ways. The resolution of a cylindrical model will give
information on the real importance of low energy elec-
trons. A computation of longitudinal electron fluxes
within a 2D model will permit to get a more precise
idea of the distribution of secondary particles along
the beam. At last a collisionnal model should explain
the energy transfer that enables electrons to reach the
wall.
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