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Abstract

According to F. Sacherer’s analytical study long time
ago, a resonance crossing of incoherent tune which is
depressed by space charge force does not cause emittance
growth nor impose intensity limit in a synchrotron. By
employing a multi-particle tracking simulation, we have
looked at coherent modes of a whole beam; not only
envelope modes (that is a quadrupole mode, which
Sacherer studied in detail) but also other modes such as
sextupole and octupole one. That mode analysis shows
that a crossing of depressed coherent modes at the
resonance of the same order, which is excited by error
fields, is a source of emittance growth and beam loss.
Beam halos induced by coherent mode oscillations of the
core are also discussed.

1  INTRODUCTION
Space charge effects in a ring are usually measured by

an incoherent tune shift, namely Laslett tune shift,
including effects of image charge. In order to avoid
crossing of lower order resonances by individual particle,
it is believed that the tune shift should be less than -0.25,
or -0.5 at most.

Synchrotrons in operation, however, show that the
crossing of half-integer resonances is not a problem[1].
Simulation study confirms that rms emittance growth or
beam loss does not occur when the largest tune shift
estimated with the Laslett formula hits a half-integer
resonance[2]. Instead, a beam becomes unstable if the
beam intensity is further increased and the largest tune
shift becomes almost as twice as much of a distance
between bare tune and the resonance. L. Smith[3] and F.
Sacherer[4], in fact, had studied in 1960s using envelope
equations and found that the resonance affects a beam
when the incoherent tune is further down by a factor of
8/5 than the distance in the tune diagram. They studied the
K-V beam to start with, but later found the same
equations are valid for the rms quantity of a beam[5].

Employing a multi-particle simulation, we extend the
study to the following areas. We first look at the coherent
quadrupole mode and its resonance for more general
particle distributions: K-V, waterbag, parabolic, and
gaussian. Although Sacherer had already showed that the
envelope equations are valid also for the rms beam size,
that does not necessarily mean the resonance occurs in the

same way for any distributions. In order to compare
different kinds of distributions, we adopt the concept of
equivalent beams, which means that the rms emittance is
the same no matter what a distribution is.

Secondly, coherent oscillations of higher order modes:
sextupole and octupole, are measured and their resonances
with external error fields are studied. Recently an
analytical derivation of higher order mode frequency is
discussed by I. Hofmann[6]. We would like to understand
a coupling of those modes to external error fields.

Finally, we propose a possible mechanism of halo
formation in a synchrotron, where the particle-core mode,
which is familiar in linac beam dynamics, is adopted. As
a source of time dependent core oscillations, the coherent
modes, which is the main subject of this paper, is
employed.

2  COHERENT MODE ANALYSIS
Let us define the coherent mode frequency (or tune). In

a multi-particle simulation, a moment of any order is
defined turn by turn in the following way[7].
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After tracking as many turns as initially specified, the
moment values are Fourier transformed as
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That gives a frequency spectrum of the moments. We
define coherent mode tune as the characteristic frequency
of the moment.

2.1  Model Lattice and Incoherent Tune Shift
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Figure 1: Incoherent tune shift vs. beam intensity.
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As a model lattice, JHF booster ring is assumed[8].
The booster ring has four-fold symmetry and its nominal
bare tune is (6.84,5.81). With normalized rms emittance
of 25 π mm-mrad at the kinetic energy of 200 MeV,
intensity dependence of incoherent tune is plotted in Fig.
1. Since the K-V beam is taken, all the particles have the
same tune.

2.2  Quadrupole Mode

Figure 2 shows a spectrum of the quadrupole mode
calculated with the moment of x2. The distribution is K-
V. When the intensity is zero (left figure), there is only
one peak that corresponds to twice of the bare tune of
6.84. Once the space charge force is increased, the mode
frequency is decreased (right figure).
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Figure 2: Spectrum of coherent quadrupole mode with
zero intensity (left) and at 2A (right). The peak in the left
corresponds to the tune of 13.68 (twice of the bare tune).
A move towards the right means decreasing of tune.

By picking up the position of the peak, intensity
dependence of the coherent quadrupole tune is shown in
Fig. 3. The slope is about 120% of that of Fig. 1,
meaning that the coherent tune moves less than twice of
the incoherent one. The quadrupole mode tune shift does
not depends on the initial distribution as long as the beam
is equivalent.
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Figure 3: Coherent quadrupole tune vs. intensity. The
tune shift is independent of the initial distribution for
equivalent beams.

Once the coherent tune hits an integer at about 17A,
rms emittance growth is observed as in Fig. 4. Figure 4
also shows that the intensity at which the emittance
growth occurs is the same for any particle distributions,
except a gaussian beam, which has little resonance
behavior.
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Figure 4: RMS emittance vs intensity. The rms
emittance growth occurs when the coherent quadrupole
tune hits an integer.

2.3  Sextupole and Octupole Modes

Now, let us look at higher order coherent modes and the
resonance of them with external error fields. We introduce
sextupole errors which are supposed to excite a third-
integer resonance at 20/3.
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Figure 5: Spectrum of coherent sextupole mode with zero
intensity (left) and at 2A (right). In the left figure, a peak
on the left corresponds to the tune of 6.84 (same as the
bare tune). A peak on the right does 20.52 (three times of
the bare tune). The left peak splits into two when the
intensity is increased.
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Figure 6: Slope of one of split modes is about one third
of the other isolated mode.

A spectrum of the coherent sextupole mode, which is
calculated with the moment of x3, is shown in Fig. 5. At
zero intensity, there are two peaks corresponding to the
bare tune and three times of it. When the intensity is
increased, all the tunes are lowered. At the same time, one
peak splits into two. The tune shift of three modes near
zero intensity is shown in Fig. 6.
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Figure 7: Coherent sextupole tune vs intensity (left) and
rms emittance vs intensity (right). One peak of the tune
corresponds to almost three times of the bare tune is
depicted. The rms emittance growth occurs when the
coherent sextupole tune hits an integer.

As the coherent quadrupole mode, intensity dependence
of the sextupole tune is smaller if one compares it with
the three times of the incoherent one. It is about 72% as
shown in Fig. 7 (left). When the coherent tune is down to
an integer, rms emittance growth occurs (Fig. 7 (right)).
The slope of the tune shift is the same for any initial
distributions, at least for waterbag and parabolic, and so
the intensity where growth occurs.

The coherent octupole mode and its resonance with
external error fields behave in a similar way.

2.4  Quadrupole Mode Excited by COD

So far, we assume external error fields and discuss the
resonance of the coherent modes with them. It seems that
nothing happens if there is no external error fields. It is
found by simulation and confirmed analytically[9],
however, that image charge induced by a closed orbit
distortion (C.O.D.) plays a role of error fields. For
example, the image charge of a circular beam pipe can be
a driving term of quadrupole errors. Figure 8 shows the
quadrupole mode and rms emittance growth. Although
there is no explicit magnetic error fields in that case,
emittance growth occurs when the mode frequency
becomes an integer. Needless to say, if there is no error
fields nor C.O.D., the emittance growth is not observed.
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Figure 8: When a C.O.D. exists, a coherent mode
resonates with image charge and emittance growth occurs.

3  HALO FORMATION IN A
SYNCHROTRON

A formation mechanism of beam halos based on the
particle-core model is investigated extensively in a linac
for last several years. We have applied the similar model

to a synchrotron and study halos in a synchrotron. The
particle-core model assumes time dependent core
oscillations and its induced parametric resonance of a
particle at tail. In a linac, the major source of core
oscillations is introduced by an initial mismatch at
injection and transitions between two different structures.
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Figure 9: Halo particle found in the multi-particle
tracking. Parametric resonance excited by coherent
quadrupole mode is the source of halo formation.
Resonance structure is clearly seen.

In a synchrotron, the initial mismatch may or may not
the source of core oscillations. We have investigated halos
induced by coherent mode oscillations. First, beam
intensity is determined in such a way that the coherent
quadrupole tune becomes 13. Then, a particle near the
edge of the core whose tune is about 6.5 satisfies a
parametric resonance and makes a large excursion in the
phase space as in Fig. 9. That particle becomes a beam
halo.

We would like to acknowledge R. Baartman for
valuable suggestions and discussions on the coherent
mode analysis.
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