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Abstract

The effects of beam intensity on the laser field on Inverse-
Bremsstrahlung Electron Acceleration are investigated. A
self-consistent Hamiltonian formalism that takes into ac-
count both particles and wave dynamics is developed. It
is shown that efficient acceleration is achieved for high-
density beams. However, for such high densities, beam
plasma effects impose a limitation on energy gain. A
method is proposed in order to remove the limiting effects.

1 INTRODUCTION

Among different methods proposed for laser-particle accel-
eration a promising branch is the one where particles and
electromagnetic fields interact directly without the aid of
dielectrics or plasmas, because of the difficulties to control
instabilities and other damaging effects generated by the
presence of such media. In particular, Kawatana and co-
workers introduced the concept of Inverse-Bremsstrahlung
Electron Acceleration [1], where asmallelectrostatic field
applied perpendicular to a propagating electromagnetic
wave breaks the symmetry in the oscillatory wave-particle
interaction. They showed that with properly chosen val-
ues for the applied electrostatic field strength, net energy
gain is obtained in one cycle of the wave. By analyzing the
nonlinear equations involved in the single-particle-wave in-
teraction, Hussein and Pato [2] demonstrated that by alter-
nating the direction of the applied electrostatic field at ap-
propriate positions, the acceleration is extended for more
than one wave cycle, leading to high energy gain. They
called this scheme as Nonlinear Amplification of Inverse-
Bremsstrahlung Electron Acceleration (NAIBEA). In this
paper, we investigate beam current effects in the NAIBEA
scheme.

2 MODEL DESCRIPTION

We consider a beam of electrons of charge−e and mass
m interacting with an applied plane electromagnetic wave
propagating in thex-direction and an applied electrostatic
field pointing along they-direction. The vector potential
that describes the electromagnetic wave is written as

eA
mc2 = −1

2
A eiϕ êy +c.c., (1)

wherec is the speed of lightin vacuo, ϕ ≡ ωt − kx, with
ω being the wave frequency andk = ω/c the wave num-
ber,A is the complex wave amplitude, andc.c. stands for
complex conjugate. The wave electric and magnetic fields
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are then given byEwave = Eyêy and Bwave = Bzêz, with
Ey = Bz = i E eiϕ/2+ c.c. andE = mcωA/e. Normaliz-
ing space to 1/k, time to 1/ω, energy tomc2, momentum
to mcand vector potential toe/mc2, the dynamics of theith

electron in the beam is described by the following particle
Hamiltonian

Hi = γi +Eappyi , (2)

γi = {1+P2
xi +[Pyi +Ay]2 +P2

zi}1/2. (3)

Here, γi is the relativistic mass factor,Pi = pi −A is the
canonical momentum, withpi being the mechanical mo-
mentum, andEapp is the normalized applied electrostatic
field in they-direction. The energy equation for the parti-
cle is obtained from Eq. (2) as

Ḣi = −vyiEy, (4)

where the dot stands for derivative with respect tot and
vi = pi/γi is the normalized (toc) particle velocity. The
NAIBEA scheme consists of alternating the sign of a prop-
erly chosenEappat the positions where the phaseϕ satisfies
ϕ = (2n+ 1)π/2, n = 1,2, · · ·. With this alternation, one
shows that the right-hand-side of Eq. (4) is always positive
leading to continuous particle energization [2].

To self-consistently take into account the effects gener-
ated by beam current on the electromagnetic fields we ap-
ply a formalism which is similar to that employed in Ref.
[3]. A slow-time evolution equation forA is readily derived
from Maxwell equations as

Ȧ =
4πie2k
mc2VT

∫
Jy e−i(t′−x′)d3r ′dt′, (5)

where a Fourier transform over the fast (primed) variables
has been performed introducing the volumeV and period
T and

Jy = −
N

∑
i=1

vyi(t)δ[r − r i(t)] (6)

is they-component of the electron current density, which
has been normalized toeck3. Here,N is the total number
of particles in the system, andr i(t) is the instantaneous dis-
placement of theith particle. Using the polar representation
for the wave amplitudeA =

√ρeiσ, Eq. (6), and the rela-
tion vyi = Pyi + Ay/γi , we can re-write Eq. (5) in the form
[4]

σ̇ = − δ√ρN

N

∑
i=1

[Pyi −√ρcosϕ′]
γi

cosϕ′, (7)

ρ̇ = −2δ√ρ
N

N

∑
i=1

[Pyi −√ρcosϕ′]
γi

sinϕ′, (8)

where
δ ≡ ω2

b/ω2, (9)
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with ω2
b = 4πe2ne/m being the beam plasma frequency

squared andne the average electron density,ϕ′ = t−xi +σ,
and use has been made of the conditionsvxi ≈ 1 and|Ṗyi|=
|Eapp| � 1.

An interesting point is that rescaling the wave dynami-
cal quantities according toσ = 2σ̄/N andρ = δρ̄ one con-
cludes that all relevant dynamical equations for both parti-
cles and fields can be derived from one generalized Hamil-
tonian given by

H =
N

∑
i=1

Hi =
N

∑
i=1

[γi +Eappyi ], (10)

γi = {1+P2
xi +[Pyi−

√
δρ̄cos(t −xi +2σ̄/N)]2 +P2

zi}1/2.

In the above Hamiltonian formalism the equations of mo-
tion for the wave quantities are given by

˙̄σ =
∂H
∂ρ̄

, ˙̄ρ = −∂H
∂σ̄

, (11)

whereσ̄ andρ̄ play the role of canonically conjugated co-
ordinate and momentum, respectively.

It readily follows from the generalized Hamiltonian in
Eq. (10) that the energy exchange between particles and
electromagnetic wave obeys a conservation law of the form

Nρ̄
2

+
N

∑
i=1

(γi +Eappyi) = const. (12)

Note thatmc2(Nρ̄/2) = uwaveVd is the total electromag-
netic energy stored in the wave, whereuwave= |E |2/8π is
the wave energy density andVd = V/k3 is the dimensional
volume.

3 RESULTS OF THE ANALYSIS

In order to analyze the self-consistent interaction in a
NAIBEA scheme, we numerically integrate the set of equa-
tions derived from the Hamiltonian in Eq. (10). We model
the interaction considering a cold beam ofN electrons per
wavelength of the laser field, homogeneously distributed
along thex-direction. We consider a specific example dis-
cussed in previous papers [1,2], namely, a 10µm wave-
length laser with electric field amplitude|E |= 1.636×109

V/cm, which corresponds to an intensity of 3.5× 1015

W/cm2. The strength of the applied electrostatic field is
|Eapp| = 4.28×10−5|E |. The electrons are injected with
an energy corresponding toγ = 106.8 at an angle of 0.608o

with respect to thex-axis. For this case, the single-particle
(not self-consistent) analysis, based on Eq. (2), reveals
that an electron initially atx(0) = 0 attain a final energy
corresponding toγ = 850 after 96 cm of interaction when
one inversion in the sign ofEapp is performed. The opti-
mal position for the electrostatic field reversion (i.e., when
ϕ = 3π/2) is found to be 32.8 cm from the injection point.

Now we investigate what happens when the wave dy-
namics is taken into account. We consider two distinct

cases, a low-density beam withδ = 5×10−8 and a high-
density beam withδ = 10−3. In Fig. 1 we show the results
obtained for the self-consistent interaction withN = 50 par-
ticles per wavelength when one inversion inEapp is per-
formed at the optimal position determined by the single-
particle analysis. The number of particles in the simula-
tion is chosen to obtain convergent (independent ofN) re-
sults for the wave dynamical quantities. To compare self-
consistent results with single-particle results, one particle
is chosen among theN particles as atag particle whose
energy is monitored during the acceleration. Thetag par-
ticle is launched exactly withx(0) = 0 (which is the initial
condition used in the single-particle analysis). The figure
presents the amplitude (a) and phase (b) of the wave, and
the energy (in terms ofγ) of thetagparticle (c) as a function
of the dimensional interaction distances= x/k for both the
low-density case (dashed curves) and the high-density case
(solid curves).

For the low-density case withδ = 5× 10−8 (dashed
curves) the wave is essentially unaffected by the presence
of particles, withρ̄ andσ̄ keeping their values unchanged
throughout the interaction, as seen in Figs. 1(a) and 1(b).
Hence, the acceleration shown in Fig. 1(c) agrees with that
found in the single-particle analysis where a maximum en-
ergy corresponding toγ = 850 is attained ats= 96.0 cm.
Despite the large particle energization, it should be pointed
out that the acceleration process for low densities is clearly
inefficient, since little energy is transferred from the wave
to the particle beam.

For the high-density case withδ = 10−3 (solid curves),
however, the acceleration process is dramatically affected
by the wave dynamics. Figure 1(a) shows that the wave
is severely damped as it interacts with the particle beam,
transferring up to 70% of its initial energy to the beam. As
a result of wave depletion, the instantaneous rate of energy
change given by Eq. (4) is reduced, and the maximum en-
ergy obtained by thetag particle is decreased toγ = 350
[see Fig. 1(c)]. Although the final energy in the high-
density case is much lower than that in the low-density
case, it still represents a good acceleration with gradients
on the order of hundreds of MeV/m.

By examining the high-density case in more detail, one
readily finds another reason for the limited particle accel-
eration, besides the wave depletion. Figure 1(b) shows
that beam plasma effects cause the wave phase velocity
to increase, which is indicated by a nearly monotonic in-
crease inσ̄. Because phase synchronous is required in the
NAIBEA scheme, even small changes inσ̄ can drive parti-
cles and wave out of phase, eventually changing the sign of
−vyiEy in Eq. (4) and ceasing the acceleration process.

To overcome the limitation on particle acceleration im-
posed by the beam-plasma-induced phase shift, we notice,
from the generalized Hamiltonian in Eq. (10), that the ef-
fective wave phase seen by the particles isϕ′ = ϕ + 2σ̄/N
instead ofϕ. Thus, by changing the sign ofEapp according
to ϕ′ = (2n+1)π/2, n = 1,2, · · ·, we can compensate self-
consistent variations of the wave phase, thereby prolonging

819



the acceleration process.
To test the efficacy of the compensation procedure, we

consider the high-density beam example presented in Fig.
1. Integrating the self-consistent set of equations, we read-
ily obtain the interaction distances for which ϕ′ = 3π/2 is
satisfied:s = 28.0 cm. In Fig. 2, the wave amplitudēρ
(solid curve) and thetag particle energyγ (dashed curve)
are shown as a function ofs for the case whereEapp is
changed at the optimized positions= 28.0 cm. Compar-
ing these results with the previous results in Figs. 1(a) and
1(c), solid curves, one observes apparent improvements in
the acceleration process with a 20% increase in the total
energy delivered by the wave to the particle beam, as well
as a 30% increase in the energy attained by thetagparticle.
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Figure 1: Results for low (dashed curves) and high (solid
curves) beam densities.

4 CONCLUSION

We have investigated the effects of beam intensity on the
laser field on the NAIBEA scheme. In particular, a self-
consistent Hamiltonian formalism that takes into account
both particles and wave dynamics has been developed. It
was found that high particle gain and efficient energy ex-
change between wave and particles can be achieved simul-
taneously for high-density beams if beam plasma effects
are judiciously taken into account.
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Figure 2: Results obtained when the inversion inEapp is
performed at the optimized position.
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