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Abstract

It is already known that, in the case of simple dynamics, the
discretisation process for the dynamical systems moulded
by nonlinear differential equations has no significant effect.
But when the flow is not stable - it appears the sensitive de-
pendence of the initial condition- or when the system is not
structurally stable, the numerical dynamics is not always the
same with the dynamics of the original system.

The aim of this paper is to study, by different numerical
methods, some differential equations and to compare qual-
itatively and quantitatively the results. We make some re-
marks about the optimal choice of the method and of the dis-
cretisation step in order to obtain a faithful description of the
initial system .

We are also interested in the occurrence of the chaotic be-
havior due to the discretization method. We analyze a sys-
tem with discontinuous control in order to observe that the
discretization introduce a new degree of freedom (the dis-
cretization step) whose value is crucial in the occurrence of
the chaotic behavior.

1 INTRODUCTION

LetM ⊂ Rn be a manifold, let f : M → Rn be a differen-
tiable function. We consider the continuous dynamical sys-
tem described by { .

x= f (x)
x(t0) = a

(1)

If (1) can not be solved by analytical methods, we can use
some numerical methods in order to approach the solu-
tion. There are some classical numerical methods (the Euler
method, the Runge-Kutta method of different orders) which
are used even in the most performed soft.

The discrete systems associated to (1) by Euler method
and by Runge-Kutta method of the second order are respec-
tively

(M, fEh (x)) (2)

and

(M, fRKh (x)) (3)

where fEh (x) = x+hf (x) and fRKh (x) = x+αhf (x)+

(1− α)hf
(
x+ h

2(1−α)f(x)
)

The dynamics of (1) is governed by the presence of the
attractors: a simple attractor induce a simple dynamics and

a strange attractor is the signature of the complex, chaotic
behavior of the flow. Sometimes we can not study the con-
tinuous system (1) and than we study the associated discrete
system. Now the problem is to know the correlations be-
tween the two dynamics, namely the connections between
the attractor of the continuous system and the attractor of
the discrete system.

We present here some considerations about this and also
some anomalies which can appear in the discretisation pro-
cess.

2 NUMERICS AND DYNAMICS

The presence of an equilibrium point of (1), respectively a
fixed point of (2) or (3) is very important in the dynamics of
the flow. The following results assure that the identification
of the fixed points of (2) or (3) guaranties the presence of an
equilibrium point of (1).

Lemma : x∈ Rn is an equilibrium point of (1) if and
only if x is a fixed point of (2), respectively (3).

But the properties of the equilibrium are not always pre-
served:

Theorem 1: Let x be an equilibrium of (1).Then:
a) If x is a repelling point then it is a repelling fixed point

of (2) respectively (3) for any value of h.
b) x is attractor (or a node) if and only if x is an attracting

fixed point (or a node) of (2), respectively (3) for all enough
small values of h.

Theorem 2: Let x a fixed point of (2) respectively (3).
Then:

a) Ifx is a repelling point then x is a repelling equilibrium
of (1) or it is not hyperbolic.

b) if x is a node for all enough small values of h, then it
is a node of (1) or it is not hyperbolic.

This results show that if we know the properties of the
equilibrium x of (1) we can precise the properties of the
fixed point x of (2) or (3), but the converse is not true. the
following examples clarify this assertion.

Example 1:

For the system

{ .
x= y
.
y= −x

the equilibrium (0, 0) is not

hyperbolic because the characteristic exponents are±i.It is
a center. The flow is stable but it is not asymptotically sta-
ble. The system is not structurally stable (because the equi-
librium is not hyperbolic).

For the discrete systems obtained by the Euler method
and by the Runge-Kutta method the fixed point (0, 0) is a
repelling point for any value of the discretisation step.



Only the Runge-Kutta method of the fourth order give a
good description of the center (0, 0).

An other classical method which gives a correct descrip-
tion of the system is the centered difference method.

Example 2: For the system{ .
x= y + ax

(
x2 + y2

)
.
y= −x+ ay

(
x2 + y2

)
the equilibrium (0, 0) is not hyperbolic. Using polar coor-
dinates x = r cos θ, y = r sin θ we obtain the system{ .

r= ar3

.

θ= −1

.
We can observe that:for a ≺ 0 , (0, 0) is an attractor, for

a = 0, (0, 0) is a center and for a � 0, (0, 0) is a repelling
point.

If we proceed to the discretisation of the system by the
Runge-Kutta method of the second order we obtain a dis-
crete system whose characteristic exponents of (0, 0) have
the absolute value greater than 1, so (0, 0) is a repellingpoint
for any positive value of the discretisation step. Anyone can
observe that the dynamics of the real system is deformed by
the discretisation process,when a ≤ 0.A more complicate
problem is that it is happening for any (small) discretisation
step, so, if we do not have an analytical control of the flow,
we can be wrong by the numerical results.

For the discrete system associate by the Euler method,
(0, 0) is also a repelling fixed point, but the system has also
an attracting limit circle, whose radius depends on a and
h.The real system has not such an orbit.

The Runge-Kutta method of the fourthorder gives a faith-
ful description of the initial system.

3 THE OCCURRENCE OF THE CHAOS
DUE TO THE NUMERICAL METHODS

More complicated situations appear when the discrete sys-
tem associated to (1) has complex, chaotic behavior.

Usually we do not have the analytical control of the sys-
tem ant we trust the numerical results, Which can be dramat-
ically different from the original ones. We shall see some
examples.

Example 3 Let consider the logistic system{ .
x= kx (L− x)
x (0) = x0

. The flow Φt (x0) has the prop-

erty that lim
t→∞

Φt (x0) = L, for any x0, so the system has a

simple dynamics.
Using the Euler method we obtain the discrete system

generated by Fa (x) = ax (1− x), where a = 1 + Lkh.
This application is the signature of the chaos. For differ-

ent values of the parameter a (so for different values of the
discretisationstep h, the system has different asymptotic be-
havior:

-ifh ∈
(
0, 2
Lk

)
then 0 is a repelling point and x = Lkh

1+Lkh
is an attractor In this case the dynamics of the two systems
are qualitatively the same.

-when the parameter a is increasing, it appears a chain of
doubling period of the global attracting orbit.

- for others values of h , as h = 2.56994
Lk or h = 3

Lk the
system is chaotic

So , in order to obtain a faithful description of the system,
we must choose h ≤ 2

Lk .
From the same equation, discretisated by the mixed dif-

ferences method, we obtain a discrete system which is topo-
logically conjugated with the Henon system. So for some
values of h this discrete system is chaotic and the original
system is not.

Let see the discretisation effect on a nonlinear control sys-
tem with discontinuity.

Let consider the Van der Pol equation:{ .
x= y

.
y= 2aω

(
1− µx2

)
yu − ω2x

(4)

If u = 1, (4) is a damped system in which the negative
damping occurs in the strip|x| < 1√

µ and positive damping

occurs for|x| > 1√
µ . The system has a stable limit cycle

denoted by C (x, y) = 0.
If u = −1, the system (4) has a reverse time and rotated

limit cycle which is unstable.

Let consider S =
{

(x, y) / s = x2 + y2

ω2 − r2 = 0
}

with r < 1√
µ

as a switching manifold and

u (x) =

{
−1, s (x) > 0
1, s (x) < 0

the control law, the oscil-

lator approaches the sinusoidal response with the radius
r.Using the Runge-Kutta algorithm we obtain the discrete

system
{
xn+1 = f1 (xn, yn, h)
yn+1 = f2 (xn, yn, h)

The choice of the discretisation step h is very important
in order to obtain a control of the system.

The sampling periodH is given by

H = sup{h > 0 / C(f1 (xn, yn, h) ,

f2 (xn, yn, h)) ≤ 0 and x2
n +

y2
n

ω2 < r2}

If h < H the behavior of the flow is quasiperiodic and
the system trajectory zigzags along the switching manifold
indicating the existence of a pseudo sliding mode.

If h > H the trajectory is moving away from the switch-
ing circle towards infinity, indicating instability.

It is clear that the choice of the discretisation step is very
important in order to obtain a correct description of the sys-
tem (4) .
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