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Abstract

In this paper we analyze the behavior of area preserving
maps and related bifurcations in an accelerator system as a
function of the tuning involving orbital and external wave
frequencies. It is found out that while sharp tuning leads to
nonmonotonic maps, poor tuning leads to monotonic maps.
The transition between these two situations and the associ-
ated sequences of bifurcations are studied in detail.

——————-

The purpose of this paper is to compare sequences of
Hamiltonian bifurcations preceding chaos in weakly and
strongly resonant wave-particle interactions. The terms
weak and strong refer to the magnitude of the frequency
mismatch between wave and relativistically-shifted parti-
cle frequencies; weak means large mismatches and strong,
small mismatches.

In the model, a relativistic particle is simultaneously sub-
mitted to the action of a background magnetic field pointing
along the z axis and an electrostatic harmonic wave propa-
gating along the x axis. The corresponding adimensional
Hamiltonian can be written as [1]-[2]

H = [1+P
2
x+(Py+x)2+P

2
z ]
1=2+Ao cos(kx�!t): (1)

With the normalizations adopted the wave frequency ! and
c k are both measured in units of the electron-cyclotron fre-
quency.

Taking Py = 0, introducing canonical guiding center co-
ordinates,Px =

p
2I cos �; x =

p
2I sin �; and making use

of the harmonic expansion for Bessel functions, it becomes
possible to cast the Hamiltonian in the resonant form [3]-[7]

H = Ho(I)+Ao

+1X

l=�1

Jl(k
p
2I) cos(l�+(l�1)!t) (2)

where Ho � [1 + 2I + P
2
z
]1=2 � ! I and where the l = 1

resonance has been conveniently rendered time indepen-
dent by means of usual canonical transformations. Hamil-
tonian (2) generates a set of primary resonances I(n;n�1),
n = +1;+2;+3:::, that can be located along the action axis
I of the appropriate gyro phase-space according to relation
nj!o(I(n;n�1))j = (n�1)!: For higher order islands a pos-
itive integerm may appear on the right-hand side replacing
(n�1) in the formnj!o(I(n;p))j = m!, m=n < 1; we shall
refer to the ratio m=n as the winding of the island chain.
Specializing the discussion on cyclotronic wave frequencies

! = 1 from now on, one notes that the most important influ-
ence in the low energy region I � 0 comes from the (1; 0)-
resonance. Its salient role is a result of the associated Bessel
factor which is much larger than those of other resonances
there; indeed, one hasJ1(2

p
I)=Jn(2

p
I) � 1=I(n�1)=2 �

1 if I � 1.
Let us then analyze the (1; 0)-resonance in some more de-

tail. The appropriate resonant Hamiltonian can be written in
the form:

H(1;0) = �I � �I
2 + Ao

p
2I

2
cos �; (3)

where besides ! = 1 we have also set k = 1, recalling that
I � 1.

Examining Hamiltonian (3) we point out that an effec-
tive negative mismatch � is introduced when Pz > 0. If � is
sufficiently small, island saturation is governed by the bal-
ance involving the nonlinear �-term and the Bessel function
term. In this case which we call strongly resonant in view of
the smallness of the mismatch term, saturation is relativistic
since the nonlinear term comes from relativistic mass cor-
rections [1, 5]. In the weakly resonant case where � is large,
island saturation is nonrelativistic because it is commanded
by the linear �-term.

In any case, the maximum amplitude of the (1; 0)-
resonance can be obtained by setting � = H(1;0) = 0 in
(3); the last equality, in particular, defines the boundary tra-
jectory, i.e. the trajectory dividing trapped from untrapped
orbits in the gyro phase-space. The maximum amplitude
of weakly resonant islands (quadratic terms discarded),
can be thus estimated as Iwr = (1=2)(Ao=�)

2 and the
amplitude of strongly resonant islands (� term discarded)
as Ir = (1=2)1=3(Ao=�)

2=3. This leads to conclude that
saturation is weakly resonant with Iwr dominating over Ir,
Iwr � Ir , when Ao � A�(Pz) � 21=2(�3=2=�1=2); the
reverse situation takes place when Ao � A�(Pz).

1.1 Strong Resonance

In the strongly resonant case one can approximately set
Pz ! 0 and obtain some analytical results [2]. It has been
shown that in this case the tuning character is nonmono-
tonic. Starting from the central elliptic point of island (1; 0)

and moving towards I ! 1, the frequency first decreases
as one goes towards the boundary and then increases as one
crosses the boundary and proceeds beyond.



1.2 Weak Resonance

In the weakly resonant regime, one can perform a Lie pertur-
bative theory to estimate the frequency behavior inside the
(1; 0)-island [2]. In this second case the system can be seen
as displaying a monotonic tuning character where the fre-
quency is always increasing as one moves towards I !1
starting from the central elliptic point.

———————————–

In both cases, the frequency at the boundary can be shown
to be non-zero. This remarkable fact leads to unusual in-
verse saddle-node bifurcation at and close to this location.

2.1 Strongly Resonant Bifurcations

Consider the strongly resonant regime first, that is, the non-
monotonic case. The frequency is larger at the elliptic point,
decreases as one approaches the boundary and starts to in-
crease again as I ! 1. Now, as one increases the wave
amplitude a chain internal to the (1; 0)-resonance with wind-
ing [r; s] (symbol “( )” denotes originallyexternal chains and
“[ ]” denotes internal chains) is born at the central elliptic
point when the amplitude is such that rj!ej = s!. Con-
sidering the shape of the frequency curve and the fact that
the whole curve displaces upwards as the wave amplitude
increases, the chain start to migrate towards the boundary
arriving there at the same time as the boundary touches an
external chain with the same winding. Then, a inverse sad-
dle node bifurcation is likely to occur.

2.2 Weakly Resonant Bifurcations

In the weakly resonant case, the situation changes. In view
of the fact that the tuning character is purely monotonic
there can be no simultaneous presence of internal and ex-
ternal chains with the same winding; this point has not been
made clear in previous works [2]. Since in this case the gy-
rofrequency decreases as one approaches the central ellip-
tic point, as the wave amplitude grows an originally exter-
nal (m;n) chain is engulfed by the expanding boundary, be-
comes thereafter an internal chain, moves towards the cen-
tral elliptic point, and eventually vanishes there when the
wave amplitude Ao is such that m!e = n!.

3 THE GENERAL CASE

The question which has not yet been properly analyzed in
the literature, refers to what happens with the external chain
if one is operating in the neighborhood of the transition from
weak to strong resonant regimes. What is likely to happen
in this case is that the external chain collapses against an
internal chain after the former has crossed the boundary but
before it reaches the central elliptic point. Let us see if this
is what really happens.

We use Pz = 0:4 to illustrate this transition case. As pre-
dicted above, the external chain crosses the (1; 0)-boundary
but do not arrive at the central elliptic point, undergoing the
inverse saddle-node before that. Fig. (1) displays the gyro
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Figure 1: Poincaré surface of sections for Ao = 0:125 and
Pz = 0:4.

phase-space for the Pz = 0:4 case. The outermost chain is
the originally external p = 5-chain and the innermost is a
[5; 1]-chain produced at the central elliptic point. The figure
represents the dynamics just before the saddle node. Fig.
(2) represents the dynamics at saddle node; for a slightly
larger value ofAo than that of Fig. (4b), the external elliptic
points also vanish. We emphasize that the saddle-node takes
place inside the (1; 0)-boundary which is the curve connect-
ing (I = 0; � = ��=2) to (I = 0; � = �=2), but much after
the external island has chance to arrive at the central fixed
point.
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Figure 2: Poincaré surface of sections forAo = 0:1255 and
pz = 0:4

The calculations performed in this paper indicate that the
position of saddle-node bifurcations in accelerating systems
are sensitive on the value of the injected beam momentum
Pz. In addition to previous analysis for large and small val-
ues of Pz we have found here that in intermediary cases
external resonances get through the boundary and undergo
inverse saddle-node before they reach the central elliptic
point.
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