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Abstract

The paper presents a computer code for solving the Lumi-
nosity Spectrum and the Differential Luminosity. Instead
of using the particles-in-cell method, the code is based on
analytical solutions and formulae. The user creates an input
data file, which contains only a few parameters, such as the
beam size, the number of particles and the center-of-mass
energy. The beam, with a round or elliptical cross-section,
is described by a uniform or a Gaussian density function in
transverse and longitudinal direction. In all cases the pro-
gram makes use of the analytical solutions for the energy
loss, the deflection angle, the Luminosity Spectrum and the
Differential Luminosity. The results for several Linear Col-
lider designs and different disruption numbers are obtained
and compared with other numerical solutions. Numerical
examples demonstrate cleary the accuracy of this method.

1 INTRODUCTION

The LuminosityL in Linear Colliders during the interaction
of e+e� beams is not constant. At the interaction point (IP)
L is dependent on the time and will be different from L0.
There are two different kinds to analyse the change of Lu-
minosity: In the first part we consider a spectral representa-
tion of the Luminosity which is investigated in dependence
of the center-of-mass-energy for the colliding electron and
positron beams. On the basis of the beamstrahlung effect
the energy loss influences the bending of the trajectories.
The whole center-of-mass-energy decreases during the col-
lision and define an energy range of an undisturbed Ecm0

to a center-of-mass-energy with maximum radiation loss
Ecm = Ecm0� �max. In this range we assign every energy
value to a Luminosity number, this relation is called the
Luminosity spectrum.
Instead of the spectrum the Luminosity is analysed in the
timedomain, usually with the derivation dL

dt
= f(t) .

2 BEAM-BEAM RADIATION
SPECTRUM

At the IP the bunch particles are under the influence of
the electromagnetic (EM) fields provided by the oncoming
beam, this effect gives rise to the bending of the particle
trajectory which induces the radiation loss of the particle

energy.
The spectral distribution of radiation from an electron cir-
culating in an homogenous magnetic field, defined as syn-
chrotron radiation, is described with an expression that was
derived by Jackson [JAC83] and Schwinger [SCHWI49].
We applied this relations to the actual radius of curvature
of the particles trajectory and found an expression for the
beamstrahlungs spectrum
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pk in Eq.(1) is the longitudinal particle impuls, ∆z is the

length from the perfect circle section and ~F? is the vertical
beam-beam force component from the oncoming space-
charge field. We apply our Eq.(1)-(4) to the SLC parameter
set (Tab.1) and calculated the radiation spectra from an elec-
tron shortly after the entrance in a positron bunch (Fig.1).
Eq.(1) was normalized to dI(!)

d!
c
e2 = f(!) .

Ecm[GeV] N �x;y[m] �z[m]

100 5:0 � 1010 1:5 � 10�6 1:05 � 10�3

Table 1: Set of SLC parameter
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Figure 1: Radiation spectra from an electron shortly
after the entrance in a positron bunch.

3 BEAM-BEAM LOSS

Knowledge of the beamstrahlung spectrum allows us now to
calculate the classical energy loss of a particle by integrating
(1) over all frequency !.
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The total particle energy is

E = mc2 = 
um0c
2 � pk

j~ujc
2 ; (5)

so it can be related to the radiation loss
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Inserting the integral (4) into this expression, we find a
purely analytical solution by using the airy integrals and
after some transformations we get
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with j~uj = �!k, the instantaneous particle velocity. To
derive the average loss for both colliding beams Eq.(7) is
integrated along the length and the beam cross-section. In
this paper the beam is described by a Gaussian density
function in transverse and longitudinal direction, further
more we calculated some other cases for the computer code.
The beam length refers to the inertial system of the bunch
which gives rise to the force field and must be recalculated
with the Lorentzfactor.

L = 2
p

3�L = 2
p

3 
v �z : (8)

The factor 2
p

3 in the effective lenght L is generated in
comparison with the energy loss from a equivalent uniform
distribution. We insert in Eq.(7) the vertical beam-beam
force for a Gaussian particle distribution and after integrat-
ing over the bunchlength L, we get the average relative

energy loss.

�c;GrGz
=

4
3

r
3
�

8 ln

�
9
8

�
r3
eN

2pkc

BLm0c2

�
1 + �

2

�2

��3 :

(9)
The following tables (3,4) present the average relative en-
ergy loss for several LC designs calculated with Eq.(9). The
results are compared with other numerical solutions.

�x[m] �y[m] �z[m]

TESLA1 6:39 � 10�7 1:01 � 10�7 1:0 � 10�3

TESLA2 4:95 � 10�7 0:64 � 10�7 1:0 � 10�3

TESLA3 10:0 � 10�7 0:64 � 10�7 1:0 � 10�3

SLC 1:5 � 10�6 1:5 � 10�6 1:05 � 10�3

NLC 1:7 � 10�7 6:5 � 10�9 0:11 � 10�3

Ecm[GeV] N [1010]

TESLA1 500 5.14
TESLA2 500 2.50
TESLA3 500 5.14

SLC 100 5.00
NLC 500 1.67

Table 2: Set of LC parameter

SLC NLC

HESHBEAM �c[%] 4:01�10�2 61:7
SCHROEDER �c[%] 4:5 � 10�2 78:0

Table 3: Beam-Beam radiation loss from SLC and NLC 1

TES.1 TES.2 TES.3

HESHBEAM �c[%] 7.76 1.52 1.77
ABEL �c[%] 7.7 3.5 1.8
MACPAR �c[%] 9.3 3.8 3.0
TRACKIT �c[%] 9.5 3.7 2.9
RBEAM �c[%] 11.3 - 3.3

Table 4: Beam-Beam radiation loss from
TESLA1,TESLA2 and TESLA3 2

4 LUMINOSITY

The spectral representation of the Luminosity L is a func-
tion of the center-of-mass energy Ecms. In section 3 we
found, that the center-of-mass energy Ecms decreases dur-
ing the penetration process (Ecms � E0cms ). This entails a
spread of the Luminosity spectra to smaller center-of-mass

1SCHROEDER[SCHR90]
2ABEL[YOK85], MACPAR[RIT84], TRACKIT[D.SCHU93] and

RBEAM from R.Brinkmann cp.[D.SCHU93]



energies. An expression of x = Ecms

E0cms

which consists of
two areas was determined.

L(x) =
�L1 fuer 1� �max=2 � x < 1
L2 fuer 1� �max � x � 1 � �max=2

(10)

L1(x) = L0
�
(1 � x) + (1 � x) �
� ( ln(�max)� ln(1 � x)� 2 ln 2 )

�
(11)

L2(x) = L0
�
�max � (1 � x)� (1 � x) �

� ( ln(�max) � ln(1 � x) )
�
; (12)

where �max is the maximum energy loss of the beam-beam
radiation. The spectra in figure 2 was calculated with the
equation and the TESLA parameter set from [CHE92]. We
compared our solution with the shape of the curve which
is presented in [CHE92], we discovered a good correspon-
dence.
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Figure 2: Luminosity spectrum L

L 0
= f(Ecm) for LC

design TESLA taken out of [CHE92]

5 DIFFERENTIAL LUMINOSITY

When the beam-beam loss is included, the effective Lu-
minosity L will be different from L0 and a Luminosity
enhancement factor HD can be defined as

HD =
1
L0
L : (13)

The differential Luminosity enhancement factor dHD

dt
is

defined by
dHD

dt
=

1
L0

dL
dt

: (14)

In the calculation we distinguish between two regimes, the
weak-focusing regime corresponding to the range (0 <

D � 1) and the transition region (1 < D � 10) . For
the transition region we derived the equation
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Figure 3 shows dHD

dt
as a function of time for the disruption

D = 0:7, the time t is in units of �z=c.
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Figure 3: Differential enhancement factor dHD

dt
=

f(ct=�z) for D = 0:7 and HD = 2:35, comparison with
[CHE88]:Fig.5.

6 CONCLUSION

In this paper we have presented some formulas and results
from our programm HESHBEAM. The results obtained
from ABEL,SCHROEDER,HESHBEAM for TESLA1,
SLC, NLC are in agreement, but there are some discrepan-
cies with the results of RBEAM,TRACKIT,HESHBEAM
for TESLA1-3. More detailed analysis of our results is
available [H.SCHU95], but due to space limitation is not
included here.
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