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Abstract

Resonant normal forms allow to study various aspects of
resonances up to high orders. We apply these techniques to
evaluate resonances in four phase space variables. The in-
put is a truncated one-turn map derived from standard track-
ing codes. A code automatically finds fixed line locations in
phase space for resonances up to a desired order. The island
widths and the island tunes of these resonances are calcu-
lated as well. As a check, it is shown to which extent re-
sults from first order perturbation theory can be reproduced
and how well the predictions of resonant normal form agree
with tracking simulations.

1 INTRODUCTION

The comprehension of the relation between resonances,
nonlinearities, tuneshifts and dynamic aperture in four-
dimensional betatronic motion is a very difficult task. The
dynamic aperture is usually determined through numerical
integration based on tracking [1, 2]. Theoretical methods
on the other hand, i.e. the perturbative theory based either
on Hamiltonian flows [3, 4, 5] or on symplectic map-
pings [6, 7, 8, 9], provide a lot of analytical information on
the detuning and on the features of the resonances.

In the case of unstable resonances, the dynamic aperture
is usually determined by the hyperbolic resonant orbits, i.e.
fixed lines [10, 11, 12, 13]. The stable resonances, on the
other hand, feature families of islands that do not limit the
stability domain, and therefore there is no direct relation
with the dynamic aperture. Several studies have shown,
however, that the analytical indicators extracted through
perturbative tools can be well-correlated with the dynamic
aperture: for instance, a minimisation of the amplitude-
dependent detuning has been used to cure the effect of the
systematic errors [14], and the correction of resonant driv-
ing terms has been proposed to sort the random errors [5]. In
a recent study concerning magnet sorting strategies to opti-
mise the dynamic aperture [15], a systematic analysis of the
correlations of the analytical quality factors with the short-
term dynamic aperture has been carried out for an LHC-like
cell lattice.

During the past years, arbitrary order codes have been de-
veloped to compute perturbative series (normal forms) of a
generic truncated one-turn map [6, 7, 9]. More recently, a
code has been developed to analyse the interpolatingHamil-
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tonian of the resonant normal form [16], and to provide at
arbitrary order all the features of the resonance [17]. In this
paper we give a check of the analytical results of this code
through tracking for a four-dimensional model of LHC that
includes all the errors and imperfections. We show that for
unstable resonances one can determine the position of the
hyperbolicfixed lines, and that the contributionof the higher
orders can be very significant. Moreover, we analyse some
stable resonances, finding a good agreement between the an-
alytical and the numerical evaluations of the island area.

2 PERTURBATIVE APPROACHES TO
NONLINEAR MOTION

The betatronic motion is described by an Hamiltonian in a
four-dimensional phase space (x; px; y; py) with a periodic
dependence on the azimuthal coordinate s. The quadratic
part corresponds to Hill equations and the solutions can be
written in terms of the Courant-Snyder coordinates.

2.1 Classical perturbative theory

Using the method of the variation of constants, one substi-
tutes the linear solution in the complete Hamiltonian, where
now the constants of the linear motion �x; �y; 'x; 'y be-
come the new phase space variables, and one obtains a new
Hamiltonian H1. Then one can apply the perturbative ap-
proach [3] and transformH1 to a simpler form that can be ei-
ther dependent on the emittances only (nonresonant theory),
or also on a linear combination of angles (resonant theory).
The perturbative parameters are usually chosen to be the
gradients of the nonlinear elements. The first order approx-
imation [4] corresponds to neglecting in H1 all the terms
that depend on the angles with the exception of the resonant
combination that shall be analysed: this approach provides
very simple and useful explicit formulas. However, the re-
sults may not be accurate enough when the higher orders are
relevant.

2.2 Normal form theory

The approach based on transfer maps and normal forms has
some significant differences with respect to the previous ap-
proach. First of all, one selects a particular section of the
machine and only the intersections of the trajectories with
that section are considered. Moreover, the perturbative pa-
rameter is the distance to the closed orbit, i.e. the contribu-
tions are ordered according to the powers of the coordinates



and not to those of the gradients. The perturbative construc-
tion is based on two steps. Firstly, an exactly symplectic
map is associated to each element, and the one-turn map is
built as the composition (and truncation) of all the maps of
the lattice. The truncated map contains all the interference
terms between the nonlinearities up to the truncation order.
Secondly, the one-turn map is transformed to another more
symmetric map, the normal form, which is written as the
map at integer times of an interpolating time-independent
Hamiltonian. The usefulness of this Hamiltonian is twofold:
it provides the integrals of motion and all the analytical in-
formation about tuneshifts and resonances.

A major advantage of the map approach is that arbitrary
order codes for the computation of both the one-turn map
and the interpolatingHamiltoniancan be built. An overview
of the normal form theory can be found in [9]; the specific
cases of four-dimensional mappings is treated in [11, 16].

3 APPLICATIONS TO LHC

3.1 The model

We considered the LHC lattice version 4, with all the normal
systematic errors and both chromatic and systematic correc-
tors. The integer part of the linear tune is set to 63 in both
planes. The fractional part of the tune was fixed to different
values to check the reliability of the resonant perturbative
tools.

3.2 Resonance (3,0)

We fixed the linear tune toQx = 63:3333 and Qz = 63:31,
close to the resonance 3Qx = 190. The nonlinear emit-
tance �2 is the second invariant, and there is a family of hy-
perbolic fixed lines (i.e. fixed points � 1D tori) that limit
the stability boundary. Using the lowest order approxima-
tion, the position of the fixed line is independent of �2; this
is equivalent to the first order approach in classical pertur-
bative theory [4]. In Fig. 1 we plot the position of the hyper-
bolic fixed lines evaluated through resonant normal forms at
order 5 in the space of the nonlinear emittances �1 and �2.
The two solid lines correspond to the maximum and to the
minimum distance to the origin of the separatrix in the plane
given by a fixed �2; the first order results of classical pertur-
bative theory are plotted for comparison (dotted line). The
higher orders provoke a collapse of the hyperbolic structures
on �1 = 0 for positive �2. In Tab. 1 we give a numerical
check of the position of one of the hyperbolic fixed lines (in-
dicated by a solid circle in Fig. 1). The first order classical
perturbative theory using HARMON [1, 2] is compared to
the normal form results at different orders, and to a numer-
ical search of the hyperbolic fixed line based on tracking.
The lowest order normal form agrees with HARMON, but
both are a factor two larger than the value obtained through
tracking. However, taking the normal form to order 5 this
difference reduces to a mere 4%.

Table 1: Position of one of the fixed lines for resonance
(3,0)

x x0 z z0

Harm. 0.0263 0.0000 0.0599 0.000
NF-2 0.0257 -0.0026 0.0599 0.000
NF-5 0.0117 -0.0012 0.0599 0.000
Track. 0.0113 -0.0011 0.0599 0.000

Figure 1: Minimum and maximum distance (solid lines) of
the separatrix due to resonance (3; 0) compared with first
order classical perturbative theory (dotted line) in the space
of nonlinear emittances

3.3 Resonance (1,2)

The same analysis was carried out for the coupled resonance
Qx + 2Qz = 190: we fixed the linear tune to Qx = 63:28
andQz = 63:3599. In this case the second invariant is given
by 2�1 � �2, and one can prove [13] that there is a fam-
ily of hyperbolic fixed lines that arise from the resonance.
Fig. 2 shows the minimum and the maximum distance of
these fixed lines from the origin (solid lines). In Tab. 2 we
give the value of the intersection of the invariant manifold
of one of the fixed lines (indicated by a solid circle in Fig. 2)
in the plane px = pz = 0. The disagreement between nor-
mal form at order 5 and tracking is less than 1%. In this case
the first order approximation is already very good.

3.4 Higher order resonances

In the case of resonances of order higher than four, the mo-
tion is stable in generic cases creating a one-parameter fam-



Table 2: Position of one of the separatrices for resonance
(1,2)

x x0 z z0

NF-2 0.0360 0.0000 0.0505 0.0000
NF-5 0.0353 0.0000 0.0496 0.0000
Track. 0.0354 0.0000 0.0496 0.0000

Figure 2: Minimum and maximum distance of the separa-
trix due to resonance (1; 2) in the space of nonlinear emit-
tances

ily of islands. The island width is changing with the second
invariant, and is therefore strongly dependent on the posi-
tion in phase space. The list of the analysed resonances and
of the selected linear tunes is given in Tab. 3. In the last
two columns we give the value of the width of the island in
the physical space (x; z) for a fixed value of the second in-
variants. In all cases the normal form series were truncated
at two orders higher than the first significant order, i.e. or-
der 6 for the (5; 0) and (1;�4) respectively and order 10
for the (9; 0) resonance. The agreement of the widths can
be considered very satisfactory. It must be pointed out that
it cannot be predicted, a priori, when the higher orders of the
map are relevant to determine the width of a resonance to the
stated precision. For instance, the width of the island evalu-
ated for the (9; 0) resonance at order 8 is 0.45, i.e. more than
three times the value computed at order 10, which agrees so
well with tracking. For all resonances, studied in this report,
we found that when the normal form series were truncated
at two orders higher than the first significant order the ac-
curacy of the computation was always increased. However,

we could not use much higher orders so as to avoid diver-
gences of the perturbative series. We also checked the posi-
tion of the elliptic and of the hyperbolic fixed lines and we
found that the normal form predictions were accurate.

Table 3: Comparison of some island widths

Resonance Qx Qz Tracking NF

(5; 0) 63.203 63.310 0:176� 0:001 0.178
(1;�4) 63.280 63.315 0:156� 0:017 0.137
(9; 0) 63.220 63.310 0:012� 0:001 0.014

4 CONCLUSIONS

The implemented normal form tool has proved to be very
useful to determine the network of resonances and the global
dynamics in phase space. The higher order effects can be
very relevant, and are automatically take into account by the
normal form codes [16]. The agreement with tracking is ex-
cellent and the perturbative methods were shown to be ef-
fective for all the analysed resonances (i.e. up to 9-th order
resonances). The higher orders are sometimes very relevant,
and have always increased the accuracy of the computations
when the normal form series were truncated at two orders
higher than the first significant order.
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