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Abstract

The paper presents a method of dynamic aperture enhance-
ment by adding nonlinear fields of higher order in sex-
tupoles.The method follows from the theory of integrable
systems; all the lattices considered here have analytical pe-
riodic invariants. For the model based on thin lenses the
dynamic aperture can be made infinite in principle, and
moreover, no chaotic trajectories appear in these maps. All
the expressions for nonlinear kicks are presented in a sim-
ple analytical form, they are determined by the linear lattice
and sextupole strengths. For continuously distributed fields
a general 1D approach is developed. Some interesting ex-
amples of 2D accelerator lattices are presented. They show
the ways how to construct 2D lattices of a perfect nonlinear
accelerator optics with regular motion.

1 BASIC CELL MAP

In this section we construct model accelerator lattices con-
sisting of one or two cells each consisting of a drift space
and a thin nonlinear lens. In the map considered, we put
p = x0, wherex0 is the particle trajectory slope, and take
the drift lengthl = 1 to simplify formulas. The map corre-
sponding to one cell is:

x = x+ p ; p = p+ f(x) : (1)

Herex; p are the initial values andx; p are the final values
of the coordinate and momentum,f(x) is the kick function
of the nonlinear lens to be found jointly with the desired
invariant.

Let’s search it in the form of a polynomial, quadratic in
momentum. The equation for an invariantI is:

A(x)p2+B(x)p+C(x) � A(x)p2+B(x)p+C(x) : (2)

whereA(x); B(x); C(x) are any analytic functions of the
coordinate. The kickf(x) of the nonlinear lens is also as-
sumed to be an arbitrary analytic function ofx.

The equation should be valid for allx and p. In par-
ticular, atp = 0, (or x = x) we can find the kick func-
tion from previous expression:f(x) = �B(x)=A(x) ; as
expressed through the other unknown functions. Substi-
tuting f(x) back into (2) we can obtain a general form of
A(x); B(x); C(x) by comparison of the L.H.S. and R.H.S.
(one can find the details in [1]). The general form of invari-
ant is:

I(x; p) = (a2x
2
+a1x+a0)p

2
+ (2a2x

3
+3a1x

2 (3)

+b1x+b0)p+ a2x
4+2a1x

3+b1x
2+2b0x

and the kick functionf is given by:

f(x) = �
2a2x

3 + 3a1x
2 + b1x+ b0

a2x2 + a1x+ a0
: (4)

A similar map was presented earlier in [2].
The transformation over two such cells was made in [1]

in a direct way for quadratic polynomials inp. It was found
there that the transformation of coefficients of these poly-
nomials is the identity transformation for the 2-cell map.
At the beginning of the first drift space the general form of
invariant quadratic in the both lenses reads:

I(x; x) = ax2x2 + bxx2 + cx2x

+dxx+ ex2 + fx2 + gx+ hx; (5)

herea; b; c; d; e; f; g; h are arbitrary constants,x = x+ p.
We obtain the kick of the first lens from the expression

for invariant at the beginning of the first (or second) drift
space. After expressing this invariant through the momen-
tum p and coordinatex we have the invariant in the form
(2) andf = �B=A, as in the first example. For the both
kicks we have:

f1(f2)(x) = �
c(b)x2 + dx+ h(g)

ax2 + b(c)x+ f(e)
� 2x : (6)

In Fig. 1 one can see the phase space portaits with the
kick (4). This lattice presents a model of ”integrable” ac-
celerator with the regular finite nonlinear motion every-
where, and the with zero strength of all resonances (the
invariant for this case has no critical points). This model
gives the way of elimination of chaos for a lattice with
one sextupole: we just have to add to it higher nonlin-
earities from the Taylor expansion of the kick (4), with
given linear part and sextupole term of the kick. Then we
have to choose the third parameter so as to make the de-
sirable phase portrait with needed aperture and free from
resonances. Then all the other terms in the expansion
will be determined by these three fixed lower terms. The
same method applied to a lattice with two nonlinear lenses
is valid for an accelerator with cells comprising two sex-
tupoles [3]. It is not important, that we take here a free
section in between two nonlinear lenses: we can represent
an arbitrary linear matrix with a drift space and two thin
lenses; the only limitation is that linear matrices between
two thin nonlinear lenses must have equal eigenvalues. So
it can already be applied for improvment of eitherx or z
dynamic aperture in simple lattices. Further, this idea of
adding higher nonlinearities of fields for making the mo-
tion regular is developed for distributed fields.
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Figure 1: Phase space for “drift space plus one thin non-
linear lens” map. Parameters of the kick (4) are:a1 =

0:2; b0 = 0; b1 = 0:45; a2 = 0:4; a0 = 1:

2 INVARIANTS POLYNOMIAL IN
MOMENTUM

The previous section dealt with the systems where the time
dependence was represented by delta-functional non-linear
kick functions, and the invariants were quadratic in mo-
mentum only at the kick moment. Here we construct a fam-
ily of continuous time-dependent 1D Hamiltonians which
have a quadratic invariant, and thus the respective motion
in 1.5D is integrable. Starting from a Hamiltonian which is
independent of the time variableT (with the particle mass
m = 1):

H(X;P ) =
P 2

2
+ U(X) ; (7)

we can apply a time-dependent (canonical) transformation
of the dynamic variables along with a relevant transforma-

tion of the time variableT (t): X(T ); P (T )
T (t)
�! x(t); p(t),

so that the Hamiltonian will take the form:

H(x; p; t) =
p2

2
+ U(x; t) : (8)

Transformation 1� is additive, use is made of any coordi-
nate displacement function of timeD(t):

t = T; x = X +D(t); p = P + _D(t) ; (9)

here ‘dot’ stands for the time derivative. The time-
dependent Hamiltonian of the new system has the form (8):

H =
p2

2
+ U(x�D(t)) � x � �D(t) : (10)

Apparently, the invariant of this 1.5D system is given by
the functionH(X;P ) of Eq. (7) whereX;P should be
expressed in terms of the new variablesx; p:

H =
1

2
(p� _D(t))2 + U(x�D(t)) = const : (11)

Transformation 2� applies an arbitrary time-dependent
coordinate normalization functionA(t) and involves a cor-
responding transformation of the time variableT ! t:

dt = A2dT; x = AX ; p = A _X + _AX =
P

A
+ _AX; (12)

where ‘dot’ denotes differentiation with respect to the
new timet and use is made of the Hamiltonian equation
dX=dT = P in the last line. By its definition,p = _x,
while the second Hamiltonian equation:

_p =
_P

A
� P

_A

A2
+ _A _X + �AX = �

U 0

A3
+ �AX

yields the desired time-dependent Hamiltonian function:

H =
p2

2
+

1

A2
U(

x

A
)�

�A

A
�
x2

2
: (13)

Again the invariant of this 1.5D integrable system is avail-
able from (7): using (12) we expressX;P via x; p and
obtain:

H =
1

2
(Ap� _Ax)2 + U(

x

A
) = const : (14)

This expression is a generalization of the Courant-Snyder
invariant of the linear systems1.

Any combination of transformations1� and2� also pro-
vides an integrable system of the form (8). Note that any in-
tegrable system produced with this technique involves three
arbitrary functions:U(X); D(t) andA(t). One can prove
directly that they form a complete set of freedoms for a
1.5D integrable system with the invariant quadratic in mo-
mentum, see [4]. Transformation2� was applied in [4] to
the 2D systems preserving angular momentum, in particu-
lar to the problem of round colliding beams.

However, the freedoms in1� and2� do not suffice for
specification of a general periodic AG lattice with variable
sextupolar fields. Combining1� and2� we can put down
the efficient general form for an invariant cubic inp:

I(x; p; t) =
1

3
(Ap�B)3+U(X;T )(Ap�B)+V (X;T )

(15)
with B = _Ax + A2 _D, A 6= 0 andD being arbitrary
functions of timeonly, and the new variablesX(x; t) =

x=A � D andT (t) =
R
dt=A2. The invariance condition

relatesU andV by a set of quasilinear equations in partial
derivatives (the latter are herafter denoted with correspond-
ing subscripts):

VX + UT = 0 ;

VT � UUX = 0 ; (16)

1Indeed, Hill’s equation�x + g(t)x = 0 impliesU = g(t)x2=2 in
(8). TakingU(X) = X2=2 in (7) we immediately obtain from (13):
�A+ g(t)A = A�3, i.e. the well-known equation for the betatron ampli-

tude function, henceA(t) =
p

�, and (14) takes the usual form of the
Courant-Snyder invariant. We see thatx; p correspond to the conventional
betatron variables,t is the machine azimuth, whileX;P are the normal-
ized betatron variables andT stands for the betatron phase advance.



and gives the expression for the forcef :

f(x; t) = �
1

A3
UX +

1

A

�
�Ax+ (A2 _D)_

�
: (17)

Equations (16) are similar to those of transonic flow in fluid
dynamics, in inverse functions they convert intolinear Tri-
comi’s equation. ProvidedU < 0 everywhere, we come to
the hyperbolic type inUTT +(UUX)X = 0, thus the (peri-
odic) Cauchy problem will bring in two free functions oft
on the axisx = 0. These together withA;D give us a suf-
ficient freedom to specify atx = 0 any periodicf; fx and
fxx, i.e. the assigned gradient and sextupolar component
functions in the lattice together withf = 0 on the closed
orbit.

The invariants quartic inp involve the set of 3 quasilin-
ear equations and thus may provide one more free function
atx = 0, e.g. for assignment of a desired octupolar compo-
nent function for strong (in principle, unlimited) enhance-
ment of the dynamic aperture.

3 EXAMPLES OF INTEGRABLE 2D MAP

We can carry over all the results of 1D case to two dimen-
sional motion by introducing the 2D map in complex vari-
ables [1]. One can construct interesting ”integrable” exam-
ples for the 2D case. Let’s take the following map:

zn = z + p;

pn = p� 2zn + F (z�n) ; (18)

herez = x + iy andp = px + ipy are composed from
the horizontal and vertical coordinates and their respective
momenta. The complex kick function

F = fx + ify = �
bz2 + dz + h

az2 + bz + f

is combined from the componentsfx; fy of a potential
force corresponding to the symplectic two-dimensional
kick. F here is an analytic function ofz which corresponds
to the (paraxial) Lorentz force from the fields satisfying the
Maxwell equations in free space. This case of Laplacian
fields is the most interesting in accelerator optics applica-
tions.

This map with one kick has the invariant (5) withz in-
stead ofx andz�n = z� + p� instead ofx (all the constants
are real,b = c; h = g; f = e).

The real and imaginary parts of any complex invariant
I(z; p�) are functionally independent and have a vanish-
ing commutator [3], thus we obtain an example of time-
dependent totally integrable 2D motion. In this case all
the trajectories are finite (dynamic aperture is infinite) and
moreover, all the trajectories are closed (see Fig.2).

We can cary over many of 1D results for the case of
round beams [4], even for the beam-beam effects! All these
2D cases are related with separated variables.
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Figure 2: 2D phase space for “drift space plus one non-
linear lens” map. X-PX, Y-PY projections are on the left
figures; upper right shows X-Y trajectory, lower right is
PX-PY portrait. Parameters of the comlex kick are:a =

10; b = 0:2; d = :5; h = 0; f = 1:

4 CONCLUSION

The main result of the present paper is the construction of
feasible 1D maps of the accelerator lattice type having in-
variants of simple form. Up to the 3rd order in momen-
tum all the invariants can be obtained from linear equa-
tions! Some examples of solutions can be extended to the
2D case, an implementation of the integrable lattices in
practical lattice design is possible in order to improve the
dynamic aperture and, it is hoped, to cure resonance over-
lapping and global stochasticity. An integrable 2D lattice
is constructed in view to give a guideline for designing an
“integrable machine” optics.
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