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Abstract 

We analyse the interaction of a high energy particle 
with an electromagnetic field. At the classical level the 
Lorentz-Dirac equation describes the relativistic motion of 
the charge. At higher frequencies quantum effects become 
significant. But the quantisation of the theory is difficult 
because the gauge invariance makes the Langrangean 
singular. We utilise the B.R.S.T. method of quantisation in 
the Batalin-Vilkoviski formulation and we substitute in the 
Lagrangean the original fields with the generalized ones who 
include also the ghost and the antifields. The resulting action 
satisfies the master equation and can be used like effective 
action of the theory. 

1. INTRODUCTION 

As well known an electric charge moving in an 
external field can generate a radiation field. This field 
interacts with the charge and this affects its motion. The 
result is the appearing of a new force, known as radiative 
reaction, force which produces the deceleration of the 
emitting charge. 

Taking into account the radiative reaction, in the 
non- relativistic approximation, the equation of motion of 
pointlike particle of charge q and mass m has the form: 

m$c 1 2q2 7+; 
4x 3c3 --+ 

(1) 

where F stands for all external forces applied to the charge. 
The relativistic description of the same phenomenon 

can be done in a 4-dimensional Minkowski space. If we 
assume T to be the proper time parameter of this space, we 
shall charactexise the ‘particle by the 4-component Lorentz 
vector X’(T) and by theu4-vectors velocity ua = dxa/d7 A-;” 
and acceleration w” =u . If we shall take into account the 
radiative reaction, the suitable relativistic equations will be 
the Lorentz-Dirac equations [ 11: 

mow (2) 

Here m, represents the “renormalised” value of the rest mass 
of particle (finite and constant). It is easy to see that in the 
nonrelativistic limit c -+ m equation (2) coincides with (1). 

In this paper will shall be interested in the 
description of the quantum effects of the motion of the 
relativistic particle in given external electromagnetic field. 
In this case Fain (2) will represent the Lorentz force. We 

shall see that our model could be considered like a constraint 
system and so for the quantisation of his motion we can 
apply the general procedures utilise in QFT for the gauge 
theories. 

A very important achievement in the quantisation of 
gauge theories in the path integral framework was obtained 
by Fadeev and Popov who have shown that a consistent 
quantum description of a system can be done if the gauge 
invariant action will be replaced in the path integral by an 
“effective action” which includes some additional variables, 
without a physical meaning. These variables have been 
denominated “ghost fields” and their role is to cancel the 
integration over the superfluos degree of freedom in the path 
integral. However, the Fadeev-Popov method doesn’t work 
very well for a large class of gauge theories, as for example 
the models with an open gauge algebra. For all these models 
the only satisfactory method of quantisation appears to be the 
BRST method. This method is based on the so-called BRST 
symmetry, a global Grassmann odd symmetry for effective 
action. The BRST symmetry incorporates very interesting 
properties and plays for the effective gauge fixed action the 
same role as the gauge invariance for the gauge theory. 

In the section 2 of this paper we shall develop the 
Lagrangean BRST formalism of Batalin and Vilkoviski 
[2,3,4]. In this formalism, on the space of the all variables 
of the model and of their associated “antifields”, an 
“antibracket” can be defined. One obtain the so-called 
“antibracket-antifield formalism” and it will provide a 
powerful tool in the construction of a quantum theory for a 
physical system with a constrained dynamics. This 
formalism will be applied in the last section for a relativistic 
particle in a given external electromagnetic field. Since this 
example corresponds to an irreductible case, we shall restrict 
ourselfs to the presentation of the BRST quantisation 
technique only for this case. The radiative reaction will not 
be actually taked into account here. It will be analised in the 
BRST context elsewhere [5], like an interesting situation 
when the Lagrangean could depend on the field derivatives 
ofordergreaterthan 1: L=L 
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2. THE ANTIBRACKET-ANTIFIELD FORMALISM IN 
THE BRST QUANTISATION 

Let us consider a gauge field theory for the fields qi, 
i=l,...,N with the Grassmann parity &(qi)=Ei. Let 

SO(qi,qi )be th e classical action describing the system. The 

eauations of motion associated will have the form: 
6So 
-z() 

n : (3) w 
The solutions q: will define the stationary points and the set 
of this points forms the stationary surface C . 

If the action is invariant under the gauge 
transformations 

Sq’ = Rht*(x) a=l,...,N (4) 
the field equations will not be independent. One gets the 
local identities: 6soR’ = 0 

Sq’ a . 
By integrating (4) on C one obtains the gauge orbits 

G. The gauge invariant observables will belong to the space 
Cm(Z/G). If the generators Rh(x) are all independent we 
have the case of an irreducible theory. By contrary, if there 
exist some non trivial ha such that h”Rb = 0 (equality on 
shell) we say that the theory is reducible. 

The BRST symmetry is a global symmetry that 
presupposes the replacement of the original gauge invariance 
(4) by a new one, the BR$T invariance. This global 
symmetry will be represented by an operators which will act 
as a graded odd derivation on the original fields q’ and on 
some supplementary meaningless variables. 

If we mark q” the set of all variables, including qi, 
we can define for each of these an “antifield” ql, conjugated 
with q* in relation to a special odd bracket, named 
“antibracket”: (q*,qi) = St. For two arbitrary functionals 
the antibracket will be: 

(F,G)dL6GdUiE 
sq* sq; sq:, sq* 

(5) 

The most important properties of s are the following: 
1) nilpotency: s2=0 
2) oddness: &(sF) = E(F) + 1 
3) the zeroth cohomological group contained all the 

gauge invariant observables: Ho(s) = C*(Z/G) 
4) can be realised like a canonical transformation in 

antibracket: sF=(F,S) 
S is named the canonical generator of s and its construction 
is equivalent with the construction of s. In the homological 
perturbation technique s starts with the so-called Koszul-Tate 
operator: s = so + . 

In the same technique S =z!?and we must identify the first 
(0) 

term with the classical action of the theory: S= So(q’). 
Passing now to the quantisation problem, we shall defme a 
bosonic Lunctional W, the quantum extension of S: 
w=s+c VW” 

n=l 

We shall ask that $W, W) = ifiAw, where A = (-l)%*d~. 

In the first order, from the last two equation we obtain the 
master eauation: (S,S)=O (6) 

Solving this equation will be the key problem in the 
BRST quantisation of the theory. The antibracket - antifield 
quantisation achieves this in two steps: 

1) One construct ari “extended action” by a suitable 
choice of the spectrum of fields and antifields 
2) by a gauge fiiing procedure, putting all antifields 

equal to zero, one obtain the effective action of the theory 
S,,. This one will be used in the path integral formalism for 
the construction of the functional integral 

Z = 1 dq’dq: exp [ 1 j$rt (7) 

It is very interesting to remark that one fixes the gauge the 
antibracket structure disappears, without having a quantum 
analog. But this structure is very useful in the fist step when 
one gets a remarkable symmetry between the fields q* and 
antifields qoA 

Let us see the minimal spectrum needed to obtain a 
suitable effective action for an irreducible gauge theory. 

-to each field equation (3) one defines the antifield 

q’i so that soqi = -3 

-to each generator of the gauge transformations (4) 
we attach the antifield qh defined by 

soq; = Rhq; 
The symmetry field-antifield in relation to the antibracket 
will impose the introduction of the ghosts q” , so that 

( ) qa,q; =“;; 
With this spectrum, a proper solution of the master equation 
will have in our case the form : 

S = So +q;R’b, q” + . . . . . . (8) 
Given (8) one can always add pairs of variables, say h”,qa 
without change the physical content of the generator S. We 
obtain a non-minimal solution of the master equation: 

S non& = s + x:lj= (9) 
The gauge futed action will be obtained if we shall 

make the substitution 
SW(e) 

4; = Yg- 10) 

Where Y(q) is a Grassmann odd function called the gauge 
fermion. 

An important result concerns the independence of 
the functional integral (7) on the choice of the gauge fermion 
[41. 

3. THE RELATIVISTE PARTICLE IN AN 
ELECTROMAGNETIC FIELD 

Let us apply the general formalism developed in the 
last paragraph for the concrete case of a relativistic particle 
in a given electromagnetic field. In this section we shall use 
the units where A=c=l and the metric (+, -, -, -). We shall 
consider first a free relativistic particle. The dynamics of this 
system will be describes by the action: 

So =-rnZ dT,/F (11) 
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The Euler-Lagrange eq:ations will be [6]: 

I.,, z-m2 ‘& =-,!!kO 
J-;a ch 

where p,, are the momenta conjugate to xp. 
After a straightforward calculation one obtains that 

i” L, = 0. Not all Euler-Lagrange equations are independent 
and the particle can be’ analysed like a constrained dynamical 
system. We are in the case of on irreducible system, the only 
one first class constraint that apear being: 

G=$p2+m2)=0 (12) 
We can introduce this constraint in the action by a 

Lagrange multiplier e(t). We should then start from the 
action [4]: 

Se[xr’,pp,e] =T dr[p,, i’ -@2+m2)] (13) 

Another posibility TC to regard e(t) as a field variable with an 
conjugated momentum x(t). We obtain in this case an extra 
first class constraint: 

G2 = n(t) = 0 (14) 
If we use now ha, a=1,2 as Lagrange multipliers, an 
equivalent action with (13) will be: 

S=ldr(p,;’ +a;--+h’(p’+m*)-h’rr 
1 (15) 

This action is invariant under the following set of irreducible 
gauge transformations: 

Sx’=p~~‘; &=k2; S~‘j’;Sh2j2 
sp,=o; srr=o 
We can identify now the spectrum of the fields and antifields 
with this introduce in the previous section for the general 
case of an irreducible system: q’ = xfl; qa = e. 

The set of nonminimal ghost contains the “fields” 
{h”; n”} a=l,2. The gauge fixed action will take the form: 

r2 

Serf=-m jdr 
Tl I 

pai’ +~g+h; +A;{’ -$p2+m2) 

4;q21 (16) 
We shall pass now to the analyse of a relativistic particle in a 
given external electromagnetic field A”. The corresponding 
action of the system will be: 
S=-m~dr,/~-q~~‘LAlld~ 

5, 7, (17) 
.I 

For the canonically conjugated momentum to xJ’ will obtain . 
the expression: pit = m 

&L- 
.a -qA,. 

We can observe that again the canonical Hamiltonian give 
rise to a first class constraint: 

[PI = (pp + qA,)2 +m2 = 0 (3.14) 

We could regard evejthing as the field gives a constant 
amount qA, to the particle momentum. The Euler-Lagrange 

equations are: 

L,=-m%+q;‘FYil=O (3.15) 

We shall start the B.R.S.T. quantisation of the system with 
an important remark: in the operator formalisme it is 
possible to make, when the electromagnetic field is present, 

the simple transition from t to i +q i in the wave equation 
from the free particle. The justification becomes clear if we 
shall check the validity of the wave equation after this 
modification is done. Taking into account the gauge 
invariance of the electromagnetic field AL = A, +&f we 
shall easy see that the solution Y of the new wave equation 
can be written in the form: 

Y, = yoe+If 
where Y,o is the solution of the same equation for the free 
particle. The two solution contain the same physical 
informations. Therefore it is natural to generalise in the 
BRST approach too for the particle in an electromagnetic 
field the relations obtained for the free particle, using the 
same transition from pa to p,, + qA,. 

We shall rewrite the action (17) in the form: 

S(x”, e, h”) = j dT( pr ;” +x;-h’G, -h2G2 

where 
Grz@,+qA”)‘+m2=0; Gz=n=O. 

We can verify that (xp, G 1) = 2(p’ + qAa), (e, G2) = 1 
The gauge fixed action will be in this case of the form: 

Serr=jdr{pll;(‘+qA? +rrd+h:$ +h;+ 

-e[(p,+qA,)2+m2]-X;q2] (18) 

The action (18) is equivalent with the action (16) and it can 
be used in (7) for the quantum description of the relativistic 
particle in a given electromagnetic field. 
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