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Abstract 
The wakefield map E,B(x,t) generated by a charged particle 
beam, moving at constant relativistic velocity, along a pipe 
has been numerically calculated for many cavity geometries, 
and analytically expressed for a cylindrical “pill box” cavity. 
In RF photoinjectors used as high quality, high intensity short 
beam sources, one is faced with a new wakefield problem : 
the wakefield of strongly accelerated particles which, extrac- 
ted from the cathode with thermal velocities, become relati- 
vistic before they leave the cavity. For a cylindrical cavity, 
the wakefield map corresponding to this situation is 
analytically deduced from Maxwell’s equations by both 
integral transform and Green’s function techniques. Results 
are found in excellent agreement with those obtained 
elsewhere by a time-dependent normal mode analysis [I]. 
Numerical applications are given for the photoinjector of the 
CEA facility “ELSA”[Z]. 

1 INTRODUCTION 

Wakefields generated by charged particle beams travelling in- 
side conducting cavities have been the subject of several nu- 
merical approaches, and of a some analytical theoretical 
works, when the cavity geometry has been simple enough to 
allow it. These works are all related to coasting beams and 
cannot be applied to a strongly accelerated beam, like a 
photoinjector beam, the velocity of which increases from 
thermal to relativistic values in a few centimeters. This is 
particularly true for the time-dependent normal mode analy- 
sis, the only method which, for a cylindrical “pill-box” cavity, 
has led not only to wake potentials (which describe a global 
effect after the beam has crossed the cavity) but to explicit 
expressions of the wakefield map E,B(x,r) (e.g. [3]). 

A modified time-dependent normal mode analysis, taking 
into account beam acceleration, is presented in a companion 
paper [Il. 

The aim of the present communication is also the 
theoretical description of the wakefield for an intense electron 
beam, strongly accelerated inside a cylindrical cavity like the 
one of a photoinjector. The approach however will bc 
different. By using both integral transform and Green’s 
function methods, Maxwell’s equations are solved in the 
space-time domain, taking into account boundary conditions 
on the cavity walls, without recourse to dcvclopmcnts in 
normal modes. 

Field expressions will be computed for the photoinjector of 
the CEA-PTN “ELSA” facility [2], and compared to those 
obtained from the normal mode analysis [ 11. 

2 STARTING EQUATIONS. MODELLINC 

We solve Maxwell equations for potentials, in Coulomb 
gauge: A@ = -P/Q, UA =poj-(l/c2)(d/&)V0 in the 
axisymmetric cylindrical cavity ?) (“pill box”) : 
O<zSg;OlrSs&. 

The initial conditions at emission beginning, t = 0, are : 
O=O, A=O; do/d = 0, aA/dt = 0. On the border 30, 
which is the conducting cavity, the boundary conditions are : 
Dirichlet conditions for Q, and the tangential component of 
A : @ = 0, A, = 0, and Neumann conditions for the normal 
component of A : dA,/dn = 0 

The source terms : 

p(r,z,t)= lm(z’t) [1-N(r-a)], 
na2j3( z)c 

.i(r,z,l) =P(zkp(r,z,f) u, 
describe a radially uniform beam of radius a and velocity 
v(z)=p(z)c, carrying a total current I with an arbitrary 
longitudinal current profile QY(Z, 1) : (H : Hcaviside) 

The RF accelerating electric field is assumed to be 
constant, which is a good approximation for the photoinjector 
of “ELSA”, the working frequency of which is 144 MHz, as 
long as the pulse duration r satisfies ~(87 ns. 

3 BRIEF OUTLINE OF THE CALCULATIONS. 
ANALYTICAL RESULTS 

Both equations in the Coulomb-gauge potentials quoted 
above are solved by integral transform and Green’s function 
techniques. Fields are then deduced, their only non-vanishing 
components being, according to symmetries : E,, E,, and 
56. 

Though an arbitrary axial current profile could be treated, 
we restrict the following results, for sake of simplicity, to a 
beam pulse of time lenght 7, with stiff front- and back- 
currcnl profiles. 

Reduced coordinates and quantities will be used, based 
upon the characteristic lcnght I-I-’ = mc2/eE, , where e and 
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m are the electron charge and mass respectively, and ,!Zc the 
RF-electric field amplitude on the photoinjector cathode: 
R=Hr, Z=Hz,p;HE, G=Hg ; T=Hct,T =Hcz, A=Ha. 

Field expressions depend on whether the beam is entirely 
extracted or not, and whether the considered point is located 
inside the beam or not. In the latter case, causality implies 
E = 0, B = 0 when the shortest distance to the emissive part 
of the cathode is larger than ct. This necessary property is not 
at all obvious in field analytical expressions ; it will be 
verified in numerical applications. 

The field expressions given below are relative to points 
located inside the beam, the latter being entirely extracted 
(t > T). 

3.1, The longitudinal electricjield Ei, = -VrD 

E,,,(R,Z,T) = -2 g cos(kPz) . 
%cA2g ,,El kp 

i sin[kp(&?- 1) du . 
max(O,T-l) 1 

l--Ak~Kl(Ak~)Io(Rkp) OIR4ASp 

A@ I, (A@) Ko (WI OSASR<p 

E,,,(R,Z,T)=x $’ 
nq,cAg p=, 

f T 

sin(kpz) . 

j sin[kp(m- 1)du 
max(O,T-l) 

K,(Akp)I,(Rkp) O<RSA<p 

I,(Akp) K,(Rkp) 0 5.4 < R Ip 

4.2. Transverse electric field E, = -dA/& , and magnetic 
field B=B,n, 

E,,(R,Z,T)=-- rco;Ag a J,Wx)J,W). 

1 [cos[r(T-T’)j.[&%\i;;~] d7“ 

- x2 cos(kpz) 
+2c .jcos,~~(7- I“). 

p=, kp(x2 + k2p2) 0 

[sin[kp(&? - l)]-sin[kR(dw-I)] 0’ 1 I dx. 

E,(R,Z,T)=-- nEf;Ag a ~JoW.;, %f$$ 

rnAb(;) i cos[dm(T - T’). 
0 

[sin[kR(ds-l)]--sin[kp(dm-l)I]U}dr. 

where : 

m,(v)=K,(a)~uJ,(uv)I,(u) dlc+I,(a)Iu~,(u~)~~(u) du 
0 a 

B,(R,Z,T)=- 2 i x{J,(~)J1(Rx)jsin[x(T-T’)1. 

,&-?%/x]dT*+; .&. 

Jo(RxhAb($)+2 
X2 

J (h)J,(W 
x2 +k2p2 ’ I 

. 

[sinIkR(m--1)1-sin[kR(dw-l)I]flf}& 

4. APPLICATION TO THE “ELSA” 
PHOTOINJECTOR : SAMPLE FIELD MAPS 

The photoinjector of the “ELSA” facility (CEA, PTN, 
Bruyeres-le-Chatel) has a wide range of possible working 
parameters. As an example, the chosen parameter set, used for 
some wake field maps presented below, is : 
E, =30MV/m,f =100A,lra2 =1cm2,r=30ps 

Fig. I a and b show the total axial E-field E, , for t=~ : a) 
on the beam axis, as a function of z, and b) on the cathode, as 
a function of r. 

3.5 : j : 

3 :... i. . . . . . ..j... I. _. 

Z = Hz =60 z (H=e.E$m$) 

Fig. I a. E, wakpfield on the beam axis, as a function of z, for t=z 
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Fig. I b. E, wakefield on the cathode, as a function of r, for L=T 

Fig. 2 shows E, (R = 0, Z) for t=t,/2, where t, is the time at 
which the beam front reaches the anode. 

:q.!~ 1.f ...~~~~~ 

Z=Hz 

Fig. 2. E, wakefield on the beam axis. as a function of 2, for f’fg I2 

Fig. 3 shows, for t=tg /2, the radial electric wakefield E,, 
for various R=Hr, as a function of Z=Mz 

0 0.5 1 1.5 2 2.5 3 3.5 4 

Z=Hz 

Fig. 3. E, wakefeldfor various R=llr, as afunction of 2 for t=lg:2 

Fig. 4 shows the B, wakefield for r=a 15, as a function of 
Z=Hz 
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Fig. 4. B, wakefield for r=a 15. as a function of Z=Hz 
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