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Abstract 

TOPKARK is a beam optics program consisting of two 
Fortran codes developed in parallel: a high-order mapping code 
and a particle tracking code. Both codes can model the spatial 
distribution function as either a uniformly-filled or a Gaussian 
3-D ellipsoid for the purpose of calculating space charge 
effects. We emphasize the tracking code, which can also 
model the spatial distribution function of a continuous beam 
as either a uniformly-filled or a Gaussian cylinder of elliptical 
cross-section. Furthermore, the tracking code employs more 
general space charge models, in both 2-D and 3-D, which 
assume only ellipsoidal symmetry of the spatial distribution. 
The evolution of initial particle distributions under the 
influence of various space charge models is considered in detail 
for beam lines in which high-order optics and space charge 
effects both play significant dynamical roles. 

1. OVERVIEW OF TIIE TOPKARK CODE 

TOPKARK has evolved from an earlier code, which was 
developed during a collaboration between Grumman, LBL and 
BNL [I]. The mapping version is a useful design tool, while 
the tracking version is useful both as a diagnostic which 
resolves any ambiguities regarding very high order effects and 
as a design tool itself. In addition, the tracking version 
incorporates more general space charge models. We discuss 
only the tracking version in this paper. 

1.1 General Features of the Code 

In the zero-current limit, TOPKARK integrates the full 
equations of motion, using a Hamiltonian formalism and an 
explicitly symplectic 4th-order integration scheme [2]. The 
code can generate a 6-D phase space ellipsoid of initial 
conditions, which yields the desired Twiss parameters in each 
of the 2-D phase planes. Distributions currently supported 
include a) uniformly-filled ellipsoid in space with Gaussian 
distribution in momentum and b) Gaussian distribution in 
space and momentum. The code can also read in a file of 
initial conditions for tracking. 

TOPKARK currently implements a number of “hard edge” 
or uniform-field magnet elements, including a dipole (with 
arbitrary entrance and exit angles) and quadrupole through 
ducxiecapole. Also available are “thin fringe” elements for 
dipole and quadrupole magnets. RMS Twiss parameters and 
current particle coordinates can be output as desired, and the 
RMS or FWHM beam envelopes can be output throughout a 
simulation for subsequent plotting. 

* This work supported by Oakridge National Laboratory Contract 
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The code uses MKS units, with all momenta normalize4I to 
the longitudinal design momentum po. When space charge 
effects are included, the Hamiltonian formulation and 
symplectic integration schemes are abandoned in favor of 
simple and direct integration of the equations of motion with a 
4th-order adaptive-step-size Runge-Kutta integrator. The 
detailed formulation of the equations of motion for straight and 
bending elements have been given elsewhere [3]. 

I .2 Space Charge Models 

We consider only models with ellipsoidal symmetry, 
meaning that the spatial density distribution has the form 

P(Xt y. 64 = PO f(u) 9 (14 
where the function u,(x,y,?iz; s) is defined by the equation 

X2 $(x,y,Sz; s) = - + y2 622 
a2+s b2+s’ & ’ (lb) 

with a&,x2>, etc., and u=+,(x,y,~z; s=O) The family of 3-D 
ellipsoids defined by Eq. (lb) are &density contours. 

Such models yield electric fields of the following form (for 
all points within the distribution) [4,5,6]: 

OQ 
f[UskY,k s>l 

0 
(a2+s)3/2 (b2+s)‘12 (c~+s)~‘~ ’ (2) 

with analogous results for Ey and E,. These electric fields are 
calculated in the bunch kame, then relativistically transformed 
to the laboratory frame [3]. 

Three distinct space charge models have been implemented 
in the tracking version of TOPKARK. The first assumes a 
uniformly-filed ellipsoid in space, for which f(u)=l, while the 
second assumes a gaussian ellipsoid in space, for which 
f(u)=exp(-u2/‘2). The third is a more general scheme developed 
by Gamett and Wangler 161 in which f(u) is Fourier expanded. 

For particles within the bounds of the assumed 3-D 
uniformly-filled ellipsoid, the purely linear space charge forces 
can be found analytically in terms of complete elliptic 
integrals [4]. In the Gaussian model, which has been used 
previously [5], the integrals cannot be evaluated in closed 
form. In this model, the space charge forces will have strong 
nonlinear components. For the more general scheme of 
Garnett and Wangler 161, f(u) is left arbitrary. Here, one must 
Fourier expand f(u), obtaining the expansion coefficients 
directly from the particle positions. 

2. HIGH-ORDER @TICS WITH SPACE CHARGE 

As an example, we consider the proposed Fusion Materials 
Irradiation Facility (FMIF), a D-Li @+ beam / flowing Li 
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target) system that seeks to mimic the 14 MeV D-T fusion 
neutron spectrum. Similarly, Accelerator Transmutation of 
Waste is an example of various large scale accelerators, 
generically denoted as AXY, which function as neutron 
spallation sources. These applications require high current and 
high-order beam manipulation to generate the desired beam 
uniformity profile and shape on target. A code like 
TOPKARK, which combines high-order optics with space 
charge models, is required for the design of such systems. 

In Table 1, we present a preliminary accelerator lattice for 
both the zero-current limit and the proposed 12.5 mA design. 
The quadrupole field strengths are given in T/m, the octupole 
field strengths in T/m3, and the duodecapole field strengths in 
T/m5. Given a beam pipe radius of 5 cm, the maximum pole 
tip field for the quadrupoles is -0.6 T, and -0.06 T for the 
higher multipoles. Table 1 shows that the lattice parameters 
must be significantly altered in order to accomodate the effects 
of space charge; thus, space charge plays a significant 
dynamical role in this nonlinear optics design. 

#l 
#2 
#3 

#4 
#5 
#6 
#7 

#8 drift 40.0 cm 

Table 1 
Preliminary Lattice Parameters for ZeroCurrent and 125 mA Designs of FMIF Final Focus 

DmAR&u 125mADesig.n 

quadnrpoe 
drift 
combined- 
function 

drift 
w=w$wole 

function 

20.0 cm 
40.0 cm 
20.0 cm 

40.0 cm 
10.0 cm 
40.0 cm 
20.0 cm 

-9.978730 
-.- 

11.41190 
-323.8069 

28000.0 
-.- 
1.210256 
-.- 

-11.52224 
511.4759 

95000.0 
-.- 

-10.16958 
-.- 

1 1.65657 
150.0 

-30000.0 

ii1613 I 
-.- 

-11.72983 
300.0 

2OOOOO.o 
-.- 

#9 quamupOle 20.0 cm 9.420227 10.44962 
#lO drift 40.0 cm -*- 
#11 quadrupole 20.0 cm 3.039918 ib 
#I2 drill 1690.0 cm -.- -.- 

&pie) 
~duodecapale) 

In Fig. 1, we show Ex due to space charge for the initial plots show that the space charge fields are initially Gaussian 
and final particle distributions from our 125 mA simulation. and finally linear, so neither tbe uniformly-filled ellipsoid nor 
The dotted line shows the fields calculated by the uniformly- the Gaussian ellipsoid models are adequate. More importantly, 
filled ellipsoid model, the dashed line those of the Gaussian third-order aberrations due to space charge are important in this 
ellipsoid model, the solid line those of the Garnett & Wangler application. The uniformly-filled ellipsoid model, with its 
model (with 11 Fourier modes), and the dots those of a simple explicitly linear fields, would miss this effect entirely, while 
coulomb model. The coulomb model is too slow and noisy the Gaussian model would exagerrate the aberrations. A more 
for simulations, but is used as an impartial arbiter here. These general model like that of Gamett & Wangler is required. 
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Figure 1. Effective Space Charge Field E, in V/m for Initial and Final Particle Distributions. 
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In Fig. 2, we show puncture plots of the final beam. The 
zero-current simulations are above, while the 125 mA results 
are below. The x-y plots show how the distribution has been 
made square and roughly uniform through the use of high-order 
multipoles. A combined-function octupole/duodecapole mag- 
net is required for both x and y: these are placed at extreme 
beam waists in order to mi@nize coupling. 

The upper right plot in Fig. 2 shows how the x-Px phase 
space has been folded over by the high-order multipoles in or- 
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der to obtain the requisite square/uniform beam. This sort of 
design has been discussed previously [7,81. The lower right 
plot shows the results obtained with space charge. Here, third- 
order space charge aberrations, which greatly increase thebeam 
emittance, largely did our work for us by yielding a nearly- 
uniform distribution: the high-order magnets were only used 
to square off the beam slightly. This is an example where 
both high-order optics and space charge are dynamically 
important and must be treated with some accuracy. 
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Figure 2. Puncture Plots of the Final Beam: Zero-Current limit shown above: 125 mA case shown below. 

3. CONCLUSIONS 

Large scale accelerators for neutron spa&&on sources, such 
as FMIF and AXY. represent an application with demanding 
design requirements. The final focus for such devices requires 
correct treatment of both high-order optics and space charge. 
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