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Abstract 

Diffusion coefficient for a bunched beam subjected to ex- 
ternal RF-noise source in a synchrotron is presented, ef- 
fect of feedbacks (FB) being taken into account. These 
FB loops are treated in a broad sense, either as an ele- 
ment of the accelerator equipment, or as unintentional FB 
through coupling impedances in the vacuum chamber re- 
sponsible for the longitudinal coherent instability driving 
mechanisms. The external noise power spectrum is as- 
sumed to be a wide-band one, i.e. it may well confine an 
arbitrary number of beam revolution frequency harmonics. 
The latter is essential to treat the noise-inflicted bunch di- 
lution in the large rings (UNK, LHC). 

1 FEEDBACK LOOPS 

Let r9 = 0 - wet be azimuth in a co-rotating frame, where 
0 is azimuth around the ring in the laboratory frame, wo is 
the angular velocity of a reference particle, t is time. The 
beam current J(6, t) and longitudinal electric field E(9, t) 

are decomposed into xk J, Ez(0)eih’ - in’ with fl being 
the frequency of Fourier transform w.r.t. the co-rotating 
frame. In the laboratory frame R is seen as w = kilo + a. 

1.1 Unintentional Feedbacks 

Interacting with passive components inside the vacuum 
chamber, the beam drives E-field whose amplitude is 

Ek(fi) = -L-1Zu(u) h(n), w=kwo+n, (1) 

where L is the orbit length, Zkk(w), ReZkk(w) 2 0 is 
the standard longitudinal impedance. Its main-diagonal 
element is cut from the entire matrix Zkk,(w) due to 
the narrow-band response peculiar to slowly perturbed 
bunched beams, 

J,f((k - k’)wo + 0) = Jk(s2)6kl;~, P Gc wo, (2) 

with 6kk, being the Kronecker’s delta-symbol. 

1.2 l3xterna.l Circuitry with PU#AD 

Let a Pick-up Unit, an Acting Device, and an Accelerating 
Cavity be cavity-like resonant objects which excite 

E(")(O,t) = L-'G(")(O)u,(t); a = PU, AD, AC, (3) 

where uU(t) is voltage across the gap, G(“)(O) specifies the 
field localization and is normalized as J:* lG(a)(0)ldO = 

27r. Its decomposition into Ck Gp)eilc9 provides Gp), the 

complex transit-time factors at w = kwo with ]Gf)] < 1. 
A quite general FB layout near RF is shown in the above 

Fig., Ref.[l]. It has the in-phase (c) and quadrature (s) 
paths. In a small-signal approximation, the first one con- 
trols an amplitude, while the latter - a phase, of the ac- 
celerating voltage seen by the beam. Either of them may 
be switched off altogether, e.g. H(‘) = 0 for injection error 
damping system, or in case of a single phase control loop. 

Let SW be a frequency deviation with 16~1 << hwo, h is 
the RF harmonic number. When H(c+)(&2hwo + 6~) = 0, 
the state of the system is given by a 2-D column-vector 

7qhd) = (qwo + 6w); u(-hwo + 6w)) 
T , (4) 

with the in-out gain through the FB being 

dy(6w) = g(sw) zg(6w) (5) 
for induced (ind) and beam-excited (a) voltages. I is 
a 2 x 2 ‘susceptibility’ matrix whose elements are 

Xll@J) = 0.25 TKS(hwo +6w) x (6) 

X (X(‘)(Sw) + B(“)(6w)) ei(4’ - 7); 

XlZ(SW) = 0.25 TK(hwo+6w)S(-ho +6w) x (7) 

x (fl(‘)(&) - H(“)(&)) ei(4’ + 5); 

XZl(6W) = x12(-6w*)*; xn(6w) = xl+~(J*)*. 

Carrier phases 5, 4’ of the frequency down- and up-mixing 
are adjusted w.r.t. to beam and accelerating voltage so as 
to comply with the FB’s purpose. 

On neglecting the PU’s impact on the beam, the FB can 
be thought of as imposing the E-field harmonics 

h(n) =-L-‘(z~k(~)Jk(n)+zk,k-2hoJk-2h(n)) (8) 
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due to beam interaction with the pair-wise impedances 

Zkk(w) = T’(w)lGfD)12 - xll(w - hwo) x (9) 

x W’(w) GiAD)GFku); 

Zk,k-ah(W) = - x12(0 - LO) x (10) 

x W’(w - 2huo) GI;AD)GyzZh; 

where w = kwo + Q, k - h > 0, jR] << wo. The domain 
of k - -h < 0 is arrived at with the reflection property 
Z-z,-k,(-w*)* = Zr,af(w). W’,T’(w) are the gap-voltage 
responses of PU and AD to the beam current. Generally, 
the AD response to RF-drive Z’(w) # T’(w). 

1.3 ExternaJ Circuitry with PU=AD 

This case represents a FB around the main RF-system 
which is responsible for beam-loading compensation and 
longitudinal instability damping, Ref.[2]. Now W’(w) = 
T’(w), and the PU detects both, the beam-imposed and 
correction signals. Hence, Eqs.5-10 have to undergo mod- 
ification: 

2(6w) --+ C(6w) r-yaw), E(Sw) = 7-t x^(6w), (11) 

where T, Z(6w) are 2 x 2 matrix unit and ‘permeability’ 
matrix, correspondingly. This FB may turn self-excited, 
which is avoided by putting zeros of Det q‘(6w) into the 
lower half-plane Im6w < 0. 

In both cases, the balance of HcC)(6w) = H(‘)(bw) re- 
sults in matrices 2, F, ?“ becoming diagonal, and in 
‘satellite’ impedances Zkk,(w) with It - k’l = 2h vanish- 
ing. Thus, the signal processing at IF w = 0 is hidden by 
electronics, and the FB acquires a 1-D band-pass gain 

0.5 H(w - hu0) TKS(w) ei(#’ - 31, w - hwo. (12) 

It is evident hereof, that Eq.8 which is used in the following 
does contain Eq.1 as a particular case. 

2 LONGITUDINAL DIFFUSION 

2.1 Diffusion Equation 

Longitudinal dilution of a proton bunch subjected to ex- 
ternal noise obeys a diffusion equation which according to, 
say, Refs.[3] reads 

a(&)(f> t) 
at 

= & (D(g)a(F;$-y . (13) 

Here .7 is action, F is bunch distribution normalized to 1, 
(. . .) is statistical average over noise ensemble, subscript ‘0’ 
denotes the mathematical average over phase 3, the canon- 
ical conjugate of ,7. Variables ($J, J) are introduced in the 
phase-plane (19,0’ E dd/dt) with the origin 29 = 0 being 
put on the unperturbed reference particle of the bunch in 
question. The diffusion coefficient is 

D(J) = 0.5(ALh)2 5 m2 vv x (14) 
m,k,k’=-m 

X J O” (Efot)(t) Eifol)‘(t - T)) eimns(J)TdT. --oo 

Functions Ihk(J’) are the coefficients of series which ex- 

pand a plane wave eik9(g, 4) into sum over multipoles: 
C,,, I$k(,7)eim~. Factor A is equal to 

A = iI:/ (ha& sin (pa) . (15) 

Here Ro is the small-amplitude synchrotron frequency (cir- 
cular), VO is the nominal amplitude of accelerating voltage, 
cpl is the stable phase angle (cpd > 0 below transition, the 
synchronous energy gain being eV0 cos (pa), n,(Z) = d$/dt 
is the non-linear synchrotron frequency. 

The beam is subjected to a random field EcLot)(79, t) 
while Eq.14 embeds time correlations of random am- 
plitudes EtO’)(t). Generally, Efot)(t) is a period- 
ically unstationary stochastic process: its moments 
@pyt) Eg4’ (t - T)) are periodic functions oft, 2x/we 
being a period. The slow diffusion is governed by the non- 
oscillating terms in (Et’“)(t) Ei:Ot)*(t - 7)) which are ex- 
tracted by t-averaging the latter over a turn (over-line in 
Eq.14). The smoothed correlations depend only on 7, and 
can hence be treated in terms of spectral intensities. 

The bunch is supposed to be matched and stationary 
until t = 0 when the noise was switched on. The diffusion 
approximation requires fluctuations E(lot)(9, t) to be fast 
and weak: 

TE(1.‘) < Tdtf, (16) 
where rdif >> 2x/we is a rate measure of the noise-induced 
bunch dilution, rEoO’) is a correlation time of E(to’)(r9, t). 
Bunch evolution is followed at time t: 7dlf Z t > 7ECLue). 

Random field EC”‘) in Eq.14 is a sum of two terms 

Efot)(Q) = Ef=‘)(1Z) + Eifb’(0) 

whose structure is revealed in the following. 

(17) 

2.2 Induced Fluctuation Eifb’(Q) 

It is the induced response of the environment to the coher- 
ent motion of the beam. Its perturbed current harmonics 
Jk(n) drive the FB according to Eq.8 and its negative- 
frequency counterpart, 

E;fa)(n) = --L-l c;=_, W(kwo + 0) Jk,(n), (18) 

zkk+) = Zkk’(w) (6k’k + bk’,k-2hk,,k,) . (19) 

Making use of the linearized Vlasov’s Eq., one finds out 

Jk(n) = L ~;=-, Ykk’(a) @“*‘(n). (20) 

Here YkkJ(fi) is the beam ‘admittance’ matrix which, for 
the beam of average current Ju in M 5 h identical and 
equispaced bunches, is equal to 

Ykk’(n) = Jo Ah (Ykk@)/k’) c;-, 6k-k’,lM, (21) 

Ykk’(R) = -in;=-, om R _ m; lg) X (22) J 3 x w%H~~ 4 
a7 Imk(g) I;Rk’(.?) d.7. 
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Slow t-dependence in (Fe)(.7, t) is ignored due to Eq.16. 
On inserting Eq.21 into Eq.18 and using Eq.17, one gets 

~;=-, m(n) EL?‘*)(n) = Ef’)(Q), (23) 

Weight factors YEi (3) specify the bunch excitation at the 
m-th multipole caused by spectral components of noise 
u(‘)(t) at frequency w 2: kwo: 

ckkf(n) = 6kkc + x;k@), (24) 

x;k,(‘) = c;,=-, Zkk+‘O + n) ykrlk@). (25) 

Here ~$.~,(n), ekk!(n) are ‘susceptibility’ and ‘permeabil- 
ity’ matrices of ‘beam & FB’ media. Zeros of Detqn), 
the eigen-frequencies of beam coherent oscillations, must 
be located in a lower half-plane Im D 5 -l/rc: < 0. Hence, 
matrix qn) is non-singular at real D, and the inverse ma- 
trix ?-l(n) exists whose elements are denoted as e;:,(n). 
An adequate damping of coherent oscillations with a good 
safety margin is essential to apply the diffusive approxi- 
mation in question, because 

TE(‘o’) - m=(7-~(4; Tel, (26) 

rdif - v,/ (fi;L2(E(“ot)2) TEE(‘.“) ) . (27) 

Hence, approaching the instability threshold from below 
that results in r6 -+ co and (E(tot)2) N (E(faja) -+ 00 
would tend to violate the tentative assumption, Eq.16. 

x ( +k+,,, (d&(.?-)) G:“+“^! .+i’(E) + 

+ . . . h’ + 42, $7 (0 --+ -$a) ). 

These functions depend on the carrier frequency h’we and 
phase cp(o. Multiplication of u(t)(t) by a high-frequency 
oscillation cos(h’wot-+9(Q) translates spectral components 
v’“(t) from w 2~ kwo into a region of (higher) frequencies 
w N (Ic f h’)wo from which these drive Earn!. Due 
to the dispersion properties of ‘beam & FB’ media, the 
source Et:;!(n) excites various Ef)( n) which affect the 
bunch by driving its multipole oscillations via Ikk, (.7)/L’. 

* Inserting ekk, - -’ - 6kk? yields results of the latest of Refs.[3]. 
Let the band-width of the FB near the main RF be 

Aw < Muo. Then, the noise at w 2: rEwo can impose only 
two resonant harmonics to occur within AU, 

2.3 External Fluctuation Eft)(R) 

Ecz*‘( n) is imposed by an external noise source with its 
statistical properties prescribed from the outside. Suppose 
the random field be localized in a single Accelerating Cav- 
ity, Eq.3 with the noise voltage across the gap being 

kl = k + llM N h > 0, k2 = k + 12M rz -h < 0, (32) 

with 21,s the integers. Hence, inverse matrix 9’(n) which 
enters Eq.31 can be found, albeit approximately, to yield 

y:L(z) = (mh/2) c;,_, (z:kc(~)/k’) x (33) 

X bk’,k+h’ - (bk’k, + 6k’kpf x 

7&“‘(t) = -y, uqq cos(h’wot - &)). (28) 

Here t is a noise type index, cp(e) is a carrier phase. Mod- 
ulating voltages ~(t)(t), (~(t)(t)) = 0 are the stochastic 
processes, mutually stationary w.r.t. the laboratory frame. 
Their spectral power densities are 
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Pq,) = 
I 

O” (#(it) JC’)(t - T)) eiwT d7. (29) 
--co 

The particular option of h’ = h, localization of P(ce’)(w) 
near w = 0, and a proper phase lock-in of $0 w.r.t. the 
main accelerating voltage allows one to interpret Eq.28 as 
a sum of amplitude and phase noises of accelerating field 
(those of an amplitude modulator, of a phase shifter). 

Adopting, say, [ = 1 and h’, ~(0 = 0 with localiza- 
tion of P([~(u) in the vicinity of w = rthwo results in a 
particular case of gap noise voltage utz”‘(t) = Jo(t), sta- 
tionary w.r.t. the laboratory frame (a shot noise of anode 
DC current in the tube, a ripple of its power supply). 

+ h’ -4 -h’, (0 (0 . . . --a -y?(f) , 1 
ok:(n) = 1+ X&k1 (a) + X&k,(n). (34) 

Equality ok(n) = 0 is, in fact, the dispersion Eq. of 
a coupled-bunch mode with a phase shift ‘L-xk/M between 
adjacent bunches. It is this Eq. that accounts for the stabi- 
lizing effect of the FB against beam coherent instabilities. 
Therefore it is, by itself, of a practical interest for which 
purpose it can be rewritten, again approximately, as 

1+ Jo Ah <k(a) Yhh(n) = 0 (35) 

with the effective, or instability driving, impedance 

Ck(n 2 mno) = Zklkl(b’o + n)/h + (36) 

+ (-l)mZkl,kl-2h(klWo + Wkl + 

+ . . . kl - k2, h--h. 

Its two non-diagonal items, if any, are responsible for the 
intrinsic asymmetry in damping of multipoles m with op- 
posite parity inherent in FB with HcC) # H(“). 

2.4 Diffusion Coeficien t 

Inserting the solution of Eq.23 and Eq.28 into Eq.14 yields 

D(Y) = o.5A2EE,E’ c;mz-, x (30) 

x NE’) (kwo + d-L(L7)) V~l,(J) Y;;)*(J). 
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y,$(~) = (mh/2) x;=_, &kt(J)/lc’) x t31) 

x X;J,k+h’ (mn,(J)) 

Dk (m%(J)) 
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