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Abstract 

At high intensity, a short range wake field can distort the 
beam’s potential well and thereby change the stationary 
distribution. It is now known that if this is not taken 
into account, instability thresholds will be incorrectly pre- 
dicted. A numerical method exists for solving the lin- 
earized Vlasov equation for the self-consistent case, includ- 
ing the distortion to the stationary distribution, and find- 
ing such thresholds. We have found physical explanations 
for the eigenmodes and instability thresholds predicted in 
this method. As a result, a much simpler stability criterion 
has been found. The criterion is simple in that it depends 
only on the stationary distribution and does not require 
solution of the linearized Vlasov equation. 

1 INTRODUCTION 

The problem of longitudinal bunched beam stability is a 
complicated one; only extreme cases have been solved ex- 
actly. At the one extreme, a narrow-band resonator can 
be treated because the long-range wake field does not ap- 
preciably distort the potential well. At the other extreme, 
i.e. space charge or inductive wall, the wake field is very 
short compared with the bunch length, and there exists 
a charge distribution (parabolic line density) for which 
there is no potential well distortion, though there is bunch- 
lengthening. As a result, there is no intensity-dependent 
synchrotron frequency spread and the problem has exact 
analytical solutions[I]. We have previously treated the 
case of space charge and arbitrary distributions, and have 
found that the criterion for stability is simply that the 
stationary distribution exist [2]. In the present work, we 
develop a method proposed, but not proved, by Oide and 
Yokoya [3] (O-Y) for the intermediate case where the bunch 
length is comparable with the wake field length. The treat- 
ment works for any distribution, though we restrict our- 
selves to the Maxwell-Boltzmann distribution as appro- 
priate for electron bunches. We find a stability criterion 
which is similar to the space charge case in that it depends 
only on the properties of the stationary distribution. 

2 THEORY 

In the usual way, a Vlasov equation can be written down. 
The time-independent case, or equivalently, the Haissinski 
equation, can be solved to give the stationary distribution 
&(p, 4). After transforming the Vlasov equation to action 
angle variables (J, 6’), a time dependent solution of the 

form $0 + $1 (t), where 

$1 = eeipt CC&(J) cosmB+S,(J)sinfr& (1) 
m 

can be found for $1 < $0. The result is an integral equa- 
tion which is intractable in the general case of intensity- 
dependent stationary distribution and frequency spread. 
Oide and Yokoya[3] therefore proposed to simply subdi- 
vide the action J into fi intervals. If the set {Jn} is chosen 
so that 0 = JO < J1 < . . < .Zh then a matrix equation can 
be obtained by making substitutions C,(J,,)AJ,, -+ C,,,, , 
and similarly for S,. The resulting equation 

p*c,, = x Mmnm’n’Cm’n’ 

can then be solved numerically. 
To our knowledge, this method has not yet been studied 

for convergence and stability, though it seems to be in rea- 
sonable agreement with numerical multi-particle tracking. 

3 RESULTS 

Fig. 1 (upper plot) shows eigenfrequencies Zi vs. intensity 
Z calculated using the O-Y method in the case of a purely 
capacitive wake field IV(Q) = B(q), where O(q) is the Heav- 
iside step function (O(q) = 0 for q < 0 and O(q) = 1 for 
q 2 0). (The units of p are wss = the unperturbed syn- 
chrotron frequency, and Z = Zb/ [(E/e)CW3urrc], where Zb 
is the current per bunch i.e. charge per bunch + revolution 
period, E the beam energy, C the wake field capacitance, 
and ur the relative rms energy spread.) The Maxwell- 
Boltzmann distribution is known to be stable in this case 
at any intensity [4], and indeed no complex eigenfrequen- 
ties are found. 

In all cases of short wake fields, we expect there to be 
a mode in which the beam oscillates as a whole in the po- 
tential well created by the rf focusing. This is the ‘rigid 
dipole mode’ and its frequency should be exactly the un- 
perturbed synchrotron frequency (,u = l), independent of 
intensity. One can see the rigid dipole mode clearly distin- 
guished from the other eigenfrequencies because it happens 
that for this particular wake field all the other frequen- 
cies are shifted upward. (The slight variation of p with 
intensity for this mode is due to the truncation of the ma- 
trix in eqn. 2, and diminishes with increasing matrix size.) 
Also, we verified that the mode with p = 1 is indeed the 
rigid dipole mode by comparing Cl(J) with that expected, 
namely, the derivative of the stationary distribution, 
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Figure 1: Frequencies vs. intensity I in the case of a purely capac- 
itive impedance. The upper plot shows eigenfrequencies pk calcu- 
lated by the O-Y method, and the lower shows incoherent frequencies 
mw,(J,)/u~~~, where m is an integer. The eigenmode with frequency 
(nearly) independent of intensity is the rigid dipole mode, 

What are the modes corresponding to the other eigen- 
frequencies in Fig. l? For each of the 6 values of J into 
which the problem has been subdivided, one can calculate 
the corresponding (incoherent) frequency uLIJ(Jn). These 
and their integer multiples have been plotted in Fig. 1 as 
well (lower plot). We see that they agree well with the 
other frequencies found by the O-Y method, excluding the 
rigid dipole mode. This indicates that these modes are 
not really collective modes. Further verification of this hy- 
pothesis comes from the fact that the eigenvector C,!& is 
found to be nonzero only at one or two values of n, and so 
represents an eigenfunction which is extremely localized in 
J, and becomes the narrower, the larger the matrix size. 
It should also be realized that the O-Y method forces the 
existence of ii ‘radial’ or ‘action’ modes. We conclude, 
therefore, that these modes are not real, in the sense of 
being physically detectable. Moreover, we do not expect 
them to couple and thereby cause instability. We call these 
modes ‘incoherent’. 

In order to separate real collective modes from the other 
‘incoherent’ eigenmodes, we introduce a parameter Xk 

Xk = a c IC&,II m,n 
where the index k corresponds to the kth eigenvalue pk. 
Since we normalize the eigenvectors C,, to have a max- 
imum value of 1, we then expect the narrow ‘incoherent’ 
modes to have X << 1, while broad modes like the rigid 
dipole mode will have much larger X. 

Fig.2 shows a plot of X” versus pk for capacitive 
impedance. One can see that the point with maximum 

X also has p = 1, verifying that this is the rigid dipole 
mode. Also, this point is not sensitive to li, whereas the 
other values of X all tend to zero as li is raised. 
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Figure 2: X” = c ICk,j/it vs. hk at intensity 2 = 5 in the case of 
purely capacitive impedance with A = 40 (open symbols) and iL = 60 

(filled symbols). 

Possible mode coupling which may lead to instability 
should take place between ‘collective’, i.e. physically de- 
tectable modes. One such mode is the rigid dipole mode, 
and the question is whether there are any other collec- 
tive modes among the solutions of eqn. 2 and whether they 
couple or not. Such modes are likely to be concentrated 
around the area where dw,/dJ = 0, if such an area ex- 
ists. In the case of capacitive impedance, dw,/dJ always 
has the same sign and dw,/dJ # 0. However, the sit- 
uation is different in the case of a resonat,or impedance 

Z(w) = R/[l + ;Q (2 - -&)I (where R is the shunt re- 

sistance and Q is the quality factor). Q should be small in 
order to approximate short range forces, and, as noted in 
the introduction, interesting effects are expected t.o occur 
when the resonant frequency wo is comparable wit,h the 
reciprocal of the bunch length, c/u.,. 

The dimensionless intensity I is defined as before, but 
now with the resonator’s high frequency capacitance, 
(WOW&)-~, used in place of C. This is the same as the 
O-Y parameter S,. [3]. Bunch length is the rms value, 
normalized using wo to make it dimensionless as well: 
Ice = WO(T,/C. The calculated eigenfrequencies are shown 
in Fig.3. Note that there is an instability with a thresh- 
old of I G 8. As with the capacitive case, most of the 
frequencies correspond to ‘incoherent’ modes. In fact, a 
plot of mw,(J,) is virtually indistinguishable from Fig. 3, 
except for the presence of the complex eigenfrequencies in 
Fig. 3. This is because in this (broad-band resonator) case, 
incoherent frequencies are shifted both up and down. and 
so the rigid dipole mode is hidden among the ‘incoherent’ 
modes. If we again plot the parameter X” vs. $ the rigid 
dipole mode can be identified. Note, however, that in the 
O-Y method there will then be an ‘incoherent’ mode with 
practically the same frequency as that of the rigid dipole 
mode, and so these degenerate modes will appear mixed. 

However, there appear to be a few other ‘real’ modes as 
well. An invest,igation of the incoherent synchrotron fre- 
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quency (Fig.4) h s ows that these modes are clustered near 
the local minimum. The physical interpretation is that 
near dw,/dJ = 0 the particles can stay ‘in step’ longer, 
and so this area constitutes a ‘coherent band’ of action. 
As intensity increases, Wsmin decreases (Fig.4), and just 
at threshold it is near w,c/2. This suggests that the insta- 
bility arises because of coupling of the quadrupole mode 
located in the ‘coherent band’ with the rigid dipole mode. 
This conjecture is verified by an inspection of the eigenvec- 
tor of the unstable mode. Also, by extrapolating the lowest 
frequency quadrupole mode in Fig. 3, we see it crosses the 
rigid dipole mode near the threshold intensity. 
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Figure 3: Eigenfrequencies vs. intensity for a broad-band type res- 
onator (Q = 1, ko = 0.6). Unstable modes are shown as diamonds. 

Figure 4: Synchrotron frequency w. vs. action J and intensity I for 
the resonator impedance Q = 1, ko = 0.6. 

The threshold calculated from the criterion w amin = [l] G. Besnier and B. Zotter, Oscillations Longitudinales d’une 
w,s/2 has been plotted vs. the bunch lengt,h in Fig.5 on Distribution Elliptique... CERN-ISR-TH/82-17. 
top of the data from ref. [3]. The agreement is good: the 
discrepancy between the solid and dashed curves is proba- 

[z] R. Baartman and M. D’yachkov, Computation of Longitu- 

bly due to the truncation of the matrix in the latter case. 
dinal Bunched Beam Instability Thresholds Proc. PAC93, 
Washington D.C., p. 3330. 

4 CONCLUSION 

When potential well distortion is significant, instability 
thresholds become difficult to calculate. The ‘brute force’ 
method suggested by Oide and Yokoya[3] is computation- 
ally intensive and little is known about its stability and 
convergence. 

A simple criterion for instability threshold suggested in 
this paper is in reasonable agreement with the O-Y method 
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Figure 5: Comparison of thresholds obtained by different methods: 
new method (solid line), O-Y method (dashed line) and numerical 
tracking (squares). The latter two cases are taken from ref. [3]. 

and numerical tracking. The instability threshold can be 
found by analyzing the stationary self-consistent distri- 
bution (easily found by solving the Hdissinski equation), 
without solving a huge matrix equation. The threshold oc- 
curs at the coupling of modes, however the modes which 
couple are different from those found by the usual tech- 
nique of solving the Sacherer integral equation using or- 
thogonal polynomials. One collective mode found in this 
method is the rigid dipole mode and the others are multi- 
pole ‘collective’ modes concentrated near the synchrotron 
amplitude where the synchrotron frequency is a minimum. 
Since this minimum W,,in decreases as intensity is raised, 
and the frequency of the rigid dipole mode is a constant 
w,c, it may happen that m,min = w,c, at which point cou- 
pling between the rigid dipole and the m multipole mode 
leads to instability. The intensity at which W,,in = w3s/2, 
thus corresponds to an instability threshold. This is sim- 
ilar to, but more stringent than, the threshold suggested 
by P. Wilson as quoted in ref. [5]: namely that instability 
occurs when W,,in = 0. 
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