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Abstract 

We present a general analytical derivation of the fringing- 
field effects in a 2D static magnetic field with median-plane 
symmetry. We obtain the corresponding matrix coefficients 
expanded in powers of the gap-over-gyroradius ratio and 
shape integrals of the field profile. Comparison is made with 
direct ray-tracing calculations for the case of the Rhodotron 
bending magnets, where this ratio is very large. 

1. INTRODUCTION 

For compactness reasons, the bending magnets of the 
10 MeV, 100 kW Rhodotron [l-3,7] exhibit a very large gap- 
over-gyroradius ratio (g/R, =0.3 to 0.45). This leads to 
important fringing-field effects (shifted effective trajectory, 
predominant correction in the effective incidence angle for 
the vertical focusing). In the literature these effects, when 
handled, are calculated to first order in g/R, [4,5]. It is thus 
pertinent to ask wether these results are still valid in the case 
of the Rhodotron magnets. Astonishingly, the answer is 
rather positive but the formulation is singularly complicated. 

2. MOTION IN A 2D STATIC MAGNETIC FIELD 
WITH MEDIAN-PLANE SYMMETRY 

2. I. Equations oftnotion 

We start with the equations of motion for charged 
particles, of charge q, in a static magnetic field which is 
constant in the X direction and possesses a median-plane 
symmetry relative to Y = 0. The components of the field are 
thus, expanded to second order in Y: 

B,(Y,Z)=O B,(Y,Z)=Y.B’(Z)+o(Y2) (1) 
B,(Y,Z)=B(Z)-fY2.B”(z)+o(Y*), 

where B(Z) is the only component, B,, of the field in the 
median plane and the prime denotes the derivative with 
respect to Z. The equations may be obtained in the form: 

dX/dZ = tancp dY/dZ = tanrljcoscp 
dL/dZ = l/(coscp~cos~) 

dv -=- 
dZ 

drl 1 -=- tancp B, -- 
dZ &(I+@ cosq B, ’ 

where 6 is the momentum deviation: 
6=(P-PoVPo > (3) 

and cp and q are the momentum azimuth in the (Z,X) 
plane and inclination to that plane (see Fig. 1). The 
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components of momentum 
p are thus: 4 

px = p.cosq.sincp /*I 

pr = p,sinq (4) p 

~ 

rl 1 
pz =p~ms~~coscp. x 

- ,-I 
cp \ 4 In Eqs. (2), $ is a value of 

reference for the magnetic 
field, which in the following 
sections will be the constant 
value of the By component 
far inside the dipole magnet. 

Figure 1 : Angular variables 
for the momentum. 

By convention, the Y axis is 
taken such that qB,, > 0. A reference momentum, pO, is also 
defined, corresponding to the reference gyroradius: 

Ro = po/@o (5) 
Note that Z has been taken as the independent variable and 
time has been replaced by the length traversed, L. 

In the following, we shall suppose that the profile goes 
from zero to a constant equal to R, through a finite length: 

(see Fig. 2). In the fixed 
reference system (x,y,z), 
fringing-field effects can 
be completely calculated 
and expanded in terms of 

,u Zb .P z 

pure shape integrals of the Figure 2 : Fringing field of finite 

field profile B(Z). exlension, with tield boundary at Z, 

2.2. Trajectories in median plane 

Since B,. is the only component of the field in the median 
plane Y = 0, trajectories with Y = q= 0 exist. The equation 
of motion (2) for cp gives then (41: 

sincp(Z) = sincpA -(g/R,) K(Z)/(1+6) , (7) 
where K(Z) is the integral of the field profile: 

Z B(Z) d-Z 
K(Z)=lz^:~“=r_,,, , 

0 g 
normalized with B, and the length g, characteristic of the 
field gradient. Usually, g is the air gap of the magnet. 

It is obvious that we obtain the same angle (Pi at ZB (or 
at any farther position) if we replace the profile B(Z) by a 
step profile starting at the plane Z = Z,, called the equivalent 
field boundary and given by [4]: 

Z,=Z,-g.I,, I, = 

I[ 

+- ~4(Z-2,) dZ (9) 
-m 

0 1 g 
(see Fig. 2). The function X(Z) is the unit step and Z, is, for 
example, the mechanical magnet boundary position (or any 
other reference position). This field boundary does not 
depend on gyroradius h( 1+ S) nor on initial angle q*, and 
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defines the equivalent, uniform magnet. 
Using the Taylor developments of tancp and l/coscp in 

sin cp and denoting the corresponding coefficients by: 
I d”tancp 

a,(q)=-- , p (cp>=l d”(I/coW 
n! d(sincp)” n n! d(sincp)” ’ 

(10) 

we can integrate the 
up”L’“LLJ “1 ,I,““~ 

(2) for X and v u I 
Comparing the values 
XB and LB at ZB 
with those given by 
the equivalent magnet 
shows that the equi- 

1 
I 

valent trajectory must- k* I I 

undergo a shift AX in Zb ZB 3 

X (see Fig. 3) and AL 
Figure 3 : Real trajectory (-) and shifted 

in L, given by: 
equivalent trajectory (- -) in median plane. 

~=~~-l)“(g/R,)“+‘(I+~~-“a,(p”) I, 

~=~~-I).(g,n,).+llI+s,-~p”(.*) I, 
0 n=l 

I,= ftw[K”(Z)-K*‘(Z)ldZ (n>l), 
,-cm L J g 

where K*(Z) denotes the integral (8) obtained for the equi- 
valent step profile. These shifts are zero for a step profile and 
are due to the fringing-field finite extension. The integrals I,, 
are shape factors characterizing the field profile B(Z)/&. 

2.3. Trajectories out of median plane 

When dealing with trajectories not restricted to the 
median plane, it is necessary to resort to a limited develop- 
ment in Y and 7\, taken here to second order. The natural 
form for the results is an expansion in powers of g/R, when 
considering the following normalized variables: 

i=xfR,. i=YjRo. i=L&, i=z/g. (12) 
Because they are odd in Y,q , the equations of motion (2) 

for Y and q are of first order here and the zero-order 
expression (7) for q(Z) is thus sufficient. The solution of the 
linear system of these two equations may be written 

i(2)=c(i).3A+S(,&.qA (13) 
q(2)= C,(,i).fA +s(i).qA 

where C’(.?),s’(Z) are not the derivatives of C(Z),S(Z). 
Taking the g/R, expansion of these functions in the form 

f(i.,l%)=~(,l%)..J,,Ci, 7 (14) 

we obtain: 
n=o 

(15) 

Rk .C,&k-lj di [+I if n=O] 

L 
Kk .S(,,ek-,) dZ 

c;,,(i) =-&-I)’ (T+$j, jzfA 6’ ‘c(,,-k) ,i’ di 
k=O 

s;,,,(i) = -$(-l)k (~+$~, If K” .Scnbkj .6’ d.?? [+I if n=O] 
k=O I” 

where i(i)=B(Z)/B, and $(i)=di/di. This recurrent 
system grves every fimctton Cc”, ,S(,,, ,C&,, ,,S[,,, at any order n 
but calculations are rapidly very com@icated (see, Sec. 3). 

The equations of motion (2) for X, cp and L are even in 
i,rl and the part of zero order, denoted here by Xi,(Z), 
q,(i) and k(i) (h for “horizontal”), has been already 
calculated in Section 2.2. We may then derive evolution 
equations for the second-order part, denoted by X’, (i), 
q,(i), .i$(<i) (v for “vertical”), with the initial values 
Xe =rpt = it =O. The solution may be written 

~“(~,=rj;(~,.~A2+FZ(~).Y^A~A+F~(~).tlA2 

cp,(i)=G,(i)~~A2+G2(i)~~A~A+GJ(~)qA2 (16) 
~(;;,=H,(~).~A2+H2(i).~A~A+HJ(~).~A2) 

and a chain of equations on the functions Jcn,, Gicn,, H~(,, , 
such as Eqs. (15) may be obtained. It is interesting to note 
that, due to a term +(~,~~)i”i”/~~# in dq,/di, the 
coefficient G,(-,) is non-zero, but only in the region where the 
field gradient is non-zero. This singularity leads to the well- 
known second-order shifl in X for g/R, -+ 0. 

The fringing-field effects are properly described by the 
transformation E + F, where E is the image of A by a drill 
up to the field boundary and F is the reciprocal image of B by 
the equivalent magnet (see Fig. 3). Expanded coefficients for 
this transformation may be derived from those of the A + B 
transformation. 

3. TRANSPORT COEFFICIENTS FOR THE 
FRINGING-FIELD EFFECTS 

The transport matrices will be expressed in a paraxial 
phase-space relative to the reference trajectory. This 
trajectory, restrained in the median plane, is obtained for the 
momentum p0 and the 
initial incidence ‘pA=io. 
Each point MO on this 
trajectory defines a local 
reference system 
Wo,.x,y,z) with z 
tangent to the reference 
trajectory, and y=Y, 
from where x is in the 
local centrifugal direc- 
tion (see Fig. 4). We also 
define & as the incli- 

‘-\ G, 

Figure 4 : Paraxial-variable definition 
Point MO is on the reference trajectory. 

nation of trajectory projection on median plane to z axis, or: 
pJpo =(1+6)~sin&.cos~ (17) 

Motion is thus described in a non-dimensional paraxial 
phase-space (xiJhs6 with: 

x, =2=x/& x2 = E x3 =3=yl% x4=11 (18) 

x5 =h=(L-&J/R, x6=6. 
Note that this phase-space is not symplectic (Liouville 
theorem is not applicable) excepted to first order. 

Transformation from a plane A to a plane B is expressed 
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to second order in paraxial variables in the usual form 151: 
r? = I &yx,A) $ + ~(x$-p;, x;x; (19) 

ll;jS;6 lSj-sGk-26 

where (x,B~) and (~~~~~$5;: denote first- and second-order 
coefficients of the transformation. 

In the ase of E -+ F transformation defined in Sec. 2, 
the coeflicients are obtained by expressing the x8’s in terms of 
X, L, (p,6 at E and F and expanding them to second order in 
the paraxial variables. We thus obtain, to second order in 
g/b (we limit ourself to first-order coefftcients here): 

(iFII;E> =(E~IE~> =<hFjhE) = (FFIZE) = I (20) 

g l+sinLiO (qFljE)=-tanio+Ti---sT-.J 
cos lo 

w 
0 

2 . . 

++ 

t 1[ 

. 2. 
slnio(l+sln loI J1:2- 

2. 
sini,(7+3sm lo) Jo;2,, 

0 cos5 i. cos* i, 1 
(qFlqE) =l+ g i Ii 2 

!LcLJ1;2-~J,;l , 

0 cos4 . 2. i 0 cos . 2. lo 1 
where 1, is given by Eq. (1 lc), and other shape factors are: 

Jn:p.q = j_a-(S&y.[ Ij*pp-~Pp df. 1 (21) 

Because of alternate parity of the trigonometric polynomial, 
with sini, small, second-order term may be of the same order 
of magnitude as the third-order one, which yields then poor 
precision at that order. Note that determinant is 1. 

4. h’PLICATlON TO THE RHODOTRON 
BENDING MAGNETS 

The Rhodoofron 77’-200 @ industrial machine constructed 
by I.B.A. is a 10 MeV, 10 passes, 100 kW continuous 
electron accelerator [2,3,7]. There are 9 bending magnets 
with 194O, 8 x 198’ deflection angles and 125 mm, 
8~ 170 mm gyration radii. Magnet faces with proper 
inclination angle i, is the only focusing device interposed 
along the 27 m acceleration path. Magnet air gap is 55 mm, 
which gives g/&=0.44 for the first 

l-77’ -- 
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Figure 5 : Field profile measured 
in Rbodotroo bending magnets. 

bending and g/R,,= 0.32 for the others. 
The field profile measured on the machine is represented 

in Fig. 5, with a cubic spline interpolation necessary for the 
second-order trajectory calculations. Table 1 gives the shape 
integrals obtained for that interpolating profile with, for 
comparison, those obtained for a linear ramp of length 2g. 

The most important fringing-field effect is the 
modification of coefficient (rtF 1 FE), which may be written 

(qFIjjE)=-tan(io-AiO) , (22) 
where Ai, is a correction given by Eqs. (20). Its first-order 
part in g/R+ is well known [4,5] but in our case, it was 
crucial to know it with a precision better than 0.5’. As it may 
be seen from Fig. 6, the aimed precision is obtained to third- 
order. The correction is resp. 8.9” and 6.5’ for the first and 
following bendings (i. = 9.5’ and 7.5“) 

5. CONCLUSION 

We have presented an analytical derivation of fringing- 
field effects in bending magnets expanded in powers of g/R0 
and pure shape integrals of the field profile. At first order we 
recover the well-known Ai, correction in (qFliE) coefficient. 
We give also original higher-order expressions, which for 
example are not in accordance with [5,6], but agree well with 
direct second-order ray-tracing calculations made in the case 
of Rhodotron bending magnets. Many important details of 
the algebra are occulted in this paper, and this topic will be 
developped in an article to be soon published. 
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Table I : Shape factors for the measured field 
protile and for the linear ramp of length 2 g 
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20 

Figure 6 : Comparison between analytical evaluations 
(- 1st order, ‘..” 2nd order, - 3rd order in g/R0 ) 

ofcorrection A& and direct ray-tracing evaluation (m) 

for g/h =0.44 (A : Rbodotron first-bending magnet). 
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