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Abstract 

The quadrupole strengths, beam position monitor (BPM) 
gains, and orbit correction magnet strengths were adjusted 
in a computer model of the NSLS X-Ray ring in order to 
best fit the model orbit response matrix to the measured 
matrix. The model matrix was fit to the 4320 data points 
in the measured matrix with an rms difference of only ‘2 to 
3 microns, which is due primarily to noise in the BPM mea- 
surements. The strengths of the 56 individual quadrupoles 
in the X-Ray ring were determined to an accuracy of about 
0.1%. Small variations of a few parts in a thousand in the 
strengths of the quadrupoles within an individual family 
were resolved. The BPM and orbit corrector calibrations 
were also accurately determined. A thorough analysis of 
both random and systematic errors is included. 

strengths 6,,,. To minimize the difference between the 
model and measured matrices, we made a vector, V, with 
the elements of V equal to the difference between the mea- 
sured and model response matrices. V has 4320 elements, 
which is the number of horizontal and vertical correctors 
times the number of BPMs. Then the equation 

1 INTRODUCTION 

The high accuracy BPMs at the NSLS yield very precise 
information about the ring optics.[4] In the X-Ray ring 
there are 51 horizontal correctors and 39 vertical correc- 
tors, and the closed orbit can be measured in both planes 
at 48 BPMs. When we measure the change in orbit at 
each BPM for a change in each corrector magnet, we have 
(51 + 39)48 = 4320 very accurate pieces of data describ- 
ing the magnetic field gradient around the ring. With this 
data we are able to find all the quadrupole strengths in 
the ring as well as the BPM and corrector calibrations.[l] 

The work we have done builds upon and borrows ideas 
from the computer codes CALIF [2] and RESOLVE [3]. 

2 METHOD 
We used the COMFORT [5] accelerator optics modeling 
program to calculate the model response matrix. The 
quadrupole, BPM, and corrector calibrations were varied 
in order to best fit the model matrix to the measured one. 
The orbit response matrix is defined by 

(yX)=M( i;) 
where A4 is either the model or the measured matrix which 
gives the change in orbit x,y with a change in corrector 
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(1) 
was solved for changes in quadrupole strengths (I(j), c& 
rector strengths (Bj), the BPM gains (Gj), and (Ap/p)j 
in order to best fit the measured to model response ma- 
trices. The parameter (Ap/p)j is the electron energy shift 
that occurs when the j th horizontal corrector strength is 
changed by 0,. This energy shift causes a shift in orbit 
proportional to the dispersion that is just large enough to 
keep the total path length of the electron trajectory fixed. 
The elements of & 

J are equal t.o the horizontal dis- 
persion. 

In equation 1 we varied 57 Kj’s for the 56 individual 
quadrupoles in the X-Ray ring plus the gradient in the 
dipoles. We varied 51 (Ap/p)j’s for the 51 horizontal cor- 
rectors, and we varied 96 Gj’s for the 48 horizontal BPMs 
and the 48 vertical BPMs. We could not independently 
vary all the BPM Gj’s and all the corrector Bj’s because 
there would be a degeneracy in the solution. All the BPM 
gains could be increased while all the corrector Bj’s were 
decreased, and the model matrix would stay constant. To 
avoid this degeneracy, we assumed one horizontal correc- 
tor and one vertical corrector were calibrated correctly. We 
fixed these two corrector strengths, and calibrated all the 
other correctors and BPMs relative to these two correctors. 
Thus we varied 50 @j’s for the 51 horizontal correctors and 
38 6,‘s for the 39 vertical correctors. This gave us a total 
of 292 varied parameters to fit the 4320 measured data 
points. Equation 1 can be written as 

with the 292 parameters denoted by xj’s. 
Actually the equation we solved was a slightly modi- 

fied version of equation 2. Different BPMs in the ring 
have different noise levels associated with their orbit mea- 
surements. We measured the noise level for each BPM 
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by measuring the orbit many times in succession without 
changing any corrector magnet strengths. The rms orbit 
shift between successive orbits for the Icth BPM, ck, gave 
the noise level associated with that BPM. The rms noise 
levels ranged from 1.1 pm to 5.1 pm, with a typical noise 
level of about 2 pm. We gave greater weight to those 
BPMs with lower noise by solving 

dK/flk K/Ok = - dx. axj’ 
3 

In this way we were minimizing the x2 deviation of the 
model from the measurements, where 

4320 

x2=pL, (4) 
i=l Ok 

The change in the model matrix with quadrupole 
strengths is nonlinear, so equation 3 was solved iteratively 
until the solution converged to the minimum x2. After 
convergence, the rms difference between the model and 
measured matrices was 2.7 pm which is very close to the 
BPM noise level of 2.0 pm. Figure 1 shows the very good 
agreement between the measured and model response from 
one of the vertical correctors. 
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Figure 1: The measured and model response from one of 
the vertical correctors at the 48 BPMs. The 2.5 pm rms 
difference between the measured and model orbit shifts is 
too small to see on the graph. 

3 ERROR ANALYSIS 
Once the algorithm had converged to minimize x2, we had 
calibrations for the quadrupoles, BPMs, and correctors 
that gave a very good fit to the measured data. Then 
we had to determine if these magnet strengths and BPM 
calibrations were really the ones in the ring. We had to 
address both random and systematic errors. 

3.1 random errors 

The easiest way to determine how much the fitted parame- 
ters vary due to random errors in the measurements is sim- 

ply to take many data sets, analyze each one separately, 
and see how much variation there is between fitted param- 
eters for the different data sets. We measured the response 
matrix ten times, and fitted a model to each response ma- 
trix. Then for each of the parameters we took the average 
over the ten data sets and calculated the rms difference 
from this average. For example, table 1 shows the aver- 
age quadrupole gradient over the ten data sets for the 8 
quadrupoles in the QD family of the X-Ray ring: The rms 
deviations from the average are about .05% which means 
that the solution is unique to within .05%. There is only 
one model that fits the data. As far as random errors are 
concerned, we can be confident that the model we have 
calculated gives the true quadrupole gradients of the ring. 
The rms deviations over the ten models for the calibrations 
of the BPMs and correctors were .17%, so random errors 
give a contribution of .17% to the error bars on our model 
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L 

3.2 systematic errors 

a sets 

We found that random errors in the orbit measurements 
propagated to put .05% error bars on our fit quadrupole 
gradients. We needed to determine if systematic errors 
increased these error bars. To do so we needed to look 
at X$in which is the value of x2 for the best fit model. 
If the only errors in the fitting are normally distributed 
random errors, then J&, should be about equal to the 
number of degrees of freedom, N - M, where N is the 
number of data points (4320), and M is the number of 
fit parameters (292). More precisely, if there were only 
normally distributed random errors, and we took many 
data sets, solving for xki,, for each data set, then the 
distribution of x~i, ‘s would be centered at N-M = 4028 
and would have a standard deviation of dw = 90 

PI. 
For the ten data sets we fit! we found XL;, averaged 

about 7500, which is many standard deviations above 
4028. A value of x$,, that is one or two standard devia- 
tions above 4028 could be explained by the fact that our 
orbit measurement errors were not normally distributed, 
but a x:~~, of 7500 can only mean that the systematic er- 
rors, though small, are not small enough to be neglected 
in determining the error bars on our fit parameters. 

The COMFORT model we used for the model response 
matrix was a linear, decoupled matrix, so it did not include 
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the effects of sextupoles and skew quadrupole gradients on 
orbit shifts. To avoid the systematic errors from the sex- 
tupoles, we simply turned them off. We can store 50 mA 
in the X-Ray ring without any sextupoles. Magnetic mea- 
surements show a small sextupole field in the dipole mag- 
nets. This sextupole field is about the right strength to 
explain the larger than expected xkin, so we believe that 
it is the largest systematic error. The decoupling in the X- 
Ray ring is very good [7], so using a decoupled mode1 put 
little error in our fitting. Another smaller contribution to 
the systematic error comes from uncertainty in the longi- 
tudinal positions of the BPMs and the corrector magnets. 

One way we can gain confidence that our fit parameters 
are correct despite systematic errors is to look at other 
measured data from the storage ring that was not used 
in the model fitting and see if it agrees with the model. 
We found that the measured tunes agreed with the model 
tunes to within measurement accuracy. The measured dis- 
persion also agreed quite well with the model dispersion. 

Of course the best way to show that the mode1 
quadrupole strengths are correct is to compare them to 
magnetic measurement data. Unfortunately magnetic 
measurement data for the X-Ray ring magnets is not read- 
ily available. (This is the main reason we undertook this 
study.) After we finished the modeling work, however, 
we did find some magnetic measurement data which con- 
firmed that our model is good. One measurement was 
the gradient in the dipole magnets. Our fit mode1 pre- 
dicted a gradient of .0054mm2, while magnet.ic measure- 
ments showed a gradient of .0051mw2. The integrated 
gradient in the dipole is only 1.8% of the typical inte- 
grated gradient in the quadrupoles, so the difference be- 
tween the model and measured integrated dipole gradient 
corresponds to only 0.1% of the integrated gradient in the 
quadrupoles. 

We could not find measured excitation curves for the 
quadrupoles, but we did find a measurement of the vari- 
ation in gradient from one quadrupole to another within 
the QC family. Before finding these measurements we were 
bothered that our model came up with a larger variation 
in gradient within the QC family than within the other 
three X-Ray quadrupole families. Each quadrupole gradi- 
ent was varied independently when fitting the model to the 
measurements; nothing constrained the gradients within a 
family to be the same. It was encouraging to see that 
the fit quadrupole gradients within a family did come out 
close to the same-see, for example the gradients within 
the QD family in table 1. Table 2 shows the variation in 
the fitted gradients within the four quadrupole families. 
To get << X >> for QD for this table, we averaged the 
8 gradients in table 1, and calculated the rms deviation 
from this average and the peak-to-peak variation of the 8 
gradients. The larger variation within the QC family also 
showed up in magnetic measurements. Magnetic measure- 
ments showed a .34% rms and a 1.3% peak-to-peak varia- 
tion in the QCs when the QCs were powered to a gradient 
of 1.53m-2. This shows that our modeling was able to re- 
solve small differences between the quadrupoles in a single 

family. 

Table 2: Calculated quadrupole gradients averaged over 
ten data sets, then averaged over all the quadrupoles in a 
familv 

Quad 1 << K >> 
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We ran yet another test that confirmed that we could 
accurately predict quadrupole strengths. We measured 
the response matrix, and then we used a trim supply to 
add additional current to the coils of just one of the QD 
magnets and remeasured the response matrix. We fit the 
model to each of these measurements and compared the fit 
quadrupole strengths. The two models predicted different 
strengths for the one QD, while the predicted strengths for 
all the other quadrupoles only differed by .l% rms. 

4 CONCLUSION 

We have shown that it is possible to accurately determine 
the individual quadrupole gradients, the corrector calibra- 
tions, and the BPM calibrations of a circular storage ring 
by fitting the model orbit response matrix to the measured 
matrix. In the future we plan to use a nonlinear, coupled 
model response matrix to find the skew quadrupole gradi- 
ent distribution as well as the normal gradient. 
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