Compact Accelerator for Proton Therapy

A.E.Bolshakov, K.K.Onosovsky Institute of Theoretical and Experimental Physics B.Cheremushkinskaya 25 USSR 117259 Moskow

Abstract

The conceptual design of the compact Hsynchrotron for proton therapy is of proposed. Main features this accelerator are small size, simplicity in control and maintenance and possibility to be vertical placing on the wall of a room. The structure and main parameters are described in this project

1. INTRODUCTION

Main features of the accelerator for proton therapy have been described in [1]. It is to be very simple in design and operation. Below we consider proton synchrotron structure which has several important advantages as compared with the accelerator described in [1]: lesser dimension of the accelerator on the whole, the bending magnets and quadrupoles, simple betatron tunes correction. This synchrotron is adapted to vertical mounting and vertical disposed beam transfer lines and treatment rooms. However, a few complications are take place in this scheme: the complicated process of slow extraction because of the lesser beam size, greater intensity of the injected beam, presence of the quadrupoles in accelerator structure.

2. ACCELERATOR STRUCTURE

The particles \mathbf{are} accelerated in following way. H- ions of ≈12 MeV energy are injected the into synchrotron. accelerated up to the energy required, guided to one of the inner recharge targets by momentum-field disadjustment and/or local horizontal orbit distortion (a bump) and ejected from the synchrotron by the main fields of the bending magnets.

The two triplets of the quadrupoles and hedge fields of bending magnets are used here for beam focusing (edge focusing). Such a focusing scheme provides small dimensions (of the accelerator and lesser apertures of here bending magnets and quadrupoles. The here is synchrotron has four long straight and beam of the beam of the four long straight and beam of the beam

eight short straight sections what is enough to place the injection-ejection devices, accelerating station and beam correction elements. Main parameters of the accelerator are given in the Table 1. Transverse motion function for one superperiod may be seen at the Fig.1.

Table 1 Main synchrotron parameters

Intensity
Particle type
Injection energy
Rjection energy
Repetition rate
Flat top duration
Orbit circumference
Number of superperiods
Superperiod structure:
01F02D02F01B10B0B0B0B1, B1,B - the edge
vertical focusing magnets, F and D -
focusing and defocusing quadrupoles,
accordingly, 0, 01 and 02 - straight
sections
01 length1.5 m
02 length0.2 m
0 length0.4 m
Total number bending magnets
Field length of B
Field length of B1 1.5 m
Edge angles of B and B1 (on entrance and
exit)0.286 rad
Bending magnets field gradient0
Bending radius
Injection field0.131 T
Maximum field
Field gradient lengths of F and D0.2 m
Normalised gradient for F-lens2.5 m ⁻²
Normalised gradient for D-lens4.6 m^{-2}
Maximum field gradient in lenses11.2 T/m
Horizontal tune, Qr0.717
Vertical tune, Qz1.235
Maximum value of β r in magnets8.1 m
Maximum value of β_z in magnets5.0 m
faximum of dispersion in magnets11.5 m
Iransition energyabsent
Thromaticity $dQ/(dp/p)r, z0.16; 3.2736$
Aperture in magnets R*Z120*35 mm ²
Half-aperture in lenses
Vacuum

CORRECTION SYSTEM AND BEAM TO TARGET GUIDING

The following correction systems are provided in the accelerator:

1. First harmonics of horizontal orbit distortion $\cos[R]$, $\sin[R]$.

2. First harmonics of vertical orbit distortion $\cos[Z]$, $\sin[Z]$.

3. Sum resonance $Q_T+Q_Z = 2$

4. Tunes.

For correction of horizontal distortions complementary winding and tunes, at bending magnets and quadrupoles are provided. Also, the complementary windings in magnets serve to produce the bump for guiding of beam to the inner recharge The targets are placing sections "0". For verti targets. in sections vertical straight distortion correction horizontal field correctors are provided. To correct the sum resonance skew quadrupoles are served.

ACCELERATION SYSTEM

The syncrotron accelerates ions to 250 Mev energy in 100 ms. 1.4 kV voltage is required for 30° equilibrium phase, and momentum spread dp/p is ± 0.3 %. The resonators are place in two neighbouring straight sections 01. The rest two sections O1 are intended for injection Main parameters of the system. acceleration system are presented in the Table 2.

Table 2 Acceleration system parameters

Harmonic number	,
Frequency change of RF2.71÷10.46 MHz	
Acceleration time0.1 s	;
Acceleration voltage1.4 kV	'
Equilibrium phase	
Number of resonator (on in reserve)2	

REFERENCES

[1] A.E.Bolshakov, L.L.Goldin et al. "Accelerator for proton therapy", in Proceedings of 2nd European Particle Accelerator Conference, Nice, France, June 1990, pp.1821-1822.